# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from abc import ABC, abstractmethod from contextlib import contextmanager from typing import Any, List, Optional import torch from torch.nn.parallel import DistributedDataParallel import pytorch_lightning as pl from pytorch_lightning.overrides.base import unwrap_lightning_module from pytorch_lightning.plugins.environments.cluster_environment import ClusterEnvironment from pytorch_lightning.plugins.io.checkpoint_plugin import CheckpointIO from pytorch_lightning.plugins.precision import PrecisionPlugin from pytorch_lightning.strategies.strategy import Strategy from pytorch_lightning.utilities import _XLA_AVAILABLE from pytorch_lightning.utilities.distributed import all_gather_ddp_if_available, ReduceOp class ParallelStrategy(Strategy, ABC): """Plugin for training with multiple processes in parallel.""" def __init__( self, accelerator: Optional["pl.accelerators.accelerator.Accelerator"] = None, parallel_devices: Optional[List[torch.device]] = None, cluster_environment: Optional[ClusterEnvironment] = None, checkpoint_io: Optional[CheckpointIO] = None, precision_plugin: Optional[PrecisionPlugin] = None, ): super().__init__(accelerator=accelerator, checkpoint_io=checkpoint_io, precision_plugin=precision_plugin) self.parallel_devices = parallel_devices self.cluster_environment = cluster_environment @property @abstractmethod def root_device(self) -> torch.device: """Return the root device.""" @property def on_gpu(self) -> bool: return self.root_device.type == "cuda" and torch.cuda.is_available() @property def on_tpu(self) -> bool: return self.root_device.type == "xla" and _XLA_AVAILABLE @property def lightning_module(self) -> Optional["pl.LightningModule"]: return unwrap_lightning_module(self.model) if self.model is not None else None @property def global_rank(self) -> int: return self.cluster_environment.global_rank() if self.cluster_environment is not None else 0 @property def local_rank(self) -> int: return self.cluster_environment.local_rank() if self.cluster_environment is not None else 0 @property def node_rank(self) -> int: return self.cluster_environment.node_rank() if self.cluster_environment is not None else 0 @property def world_size(self) -> int: return self.cluster_environment.world_size() if self.cluster_environment is not None else 1 @property def is_global_zero(self) -> bool: return self.global_rank == 0 @property def distributed_sampler_kwargs(self): distributed_sampler_kwargs = dict(num_replicas=len(self.parallel_devices), rank=self.global_rank) return distributed_sampler_kwargs def reconciliate_processes(self, trace: str): """Function to re-conciliate processes on failure.""" def all_gather(self, tensor: torch.Tensor, group: Optional[Any] = None, sync_grads: bool = False) -> torch.Tensor: """Perform a all_gather on all processes.""" return all_gather_ddp_if_available(tensor, group=group, sync_grads=sync_grads) def reduce_boolean_decision(self, decision: bool) -> bool: decision = torch.tensor(int(decision), device=self.lightning_module.device) decision = self.reduce(decision, reduce_op=ReduceOp.SUM) decision = bool(decision == self.world_size) return decision @property def torch_distributed_backend(self): torch_backend = os.getenv("PL_TORCH_DISTRIBUTED_BACKEND") if torch_backend is None: torch_backend = "nccl" if self.on_gpu else "gloo" return torch_backend @staticmethod def configure_sync_batchnorm(model: "pl.LightningModule") -> "pl.LightningModule": """Add global batchnorm for a model spread across multiple GPUs and nodes. Override to synchronize batchnorm between specific process groups instead of the whole world or use a different sync_bn like `apex`'s version. Args: model: pointer to current :class:`LightningModule`. Return: LightningModule with batchnorm layers synchronized between process groups """ return torch.nn.SyncBatchNorm.convert_sync_batchnorm(model) @contextmanager def block_backward_sync(self): """Blocks ddp sync gradients behaviour on backwards pass. This is useful for skipping sync when accumulating gradients, reducing communication overhead Returns: context manager with sync behaviour off """ if isinstance(self.model, DistributedDataParallel): with self.model.no_sync(): yield None else: yield None def teardown(self) -> None: self.cluster_environment.teardown() super().teardown()