# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from typing import Any, List, Optional, Union import torch from torch.utils.data import DataLoader import pytorch_lightning as pl from pytorch_lightning.overrides.base import _LightningModuleWrapperBase from pytorch_lightning.plugins.environments.cluster_environment import ClusterEnvironment from pytorch_lightning.plugins.io.checkpoint_plugin import CheckpointIO from pytorch_lightning.plugins.precision import PrecisionPlugin from pytorch_lightning.strategies.parallel import ParallelStrategy from pytorch_lightning.trainer.states import RunningStage, TrainerFn from pytorch_lightning.utilities import _IPU_AVAILABLE, _POPTORCH_AVAILABLE from pytorch_lightning.utilities.apply_func import apply_to_collection from pytorch_lightning.utilities.cloud_io import get_filesystem from pytorch_lightning.utilities.data import _get_dataloader_init_kwargs from pytorch_lightning.utilities.enums import PrecisionType from pytorch_lightning.utilities.exceptions import MisconfigurationException from pytorch_lightning.utilities.types import STEP_OUTPUT if _POPTORCH_AVAILABLE: import poptorch else: poptorch = None class LightningIPUModule(_LightningModuleWrapperBase): def __init__(self, pl_module: "pl.LightningModule", precision: Union[str, int]): super().__init__(pl_module) self.precision = precision def forward(self, *inputs: Any, **kwargs: Any) -> Any: if self.precision in (PrecisionType.MIXED, PrecisionType.HALF): inputs = self._move_float_tensors_to_half(inputs) return super().forward(*inputs, **kwargs) @staticmethod def batch_to(data: torch.Tensor) -> torch.Tensor: return data.half() def _move_float_tensors_to_half(self, batch: Any) -> Any: batch = apply_to_collection(batch, (torch.FloatTensor, torch.cuda.FloatTensor), function=self.batch_to) return batch class IPUStrategy(ParallelStrategy): """Plugin for training on IPU devices.""" def __init__( self, accelerator: Optional["pl.accelerators.accelerator.Accelerator"] = None, device_iterations: int = 1, autoreport: bool = False, autoreport_dir: Optional[str] = None, parallel_devices: Optional[List[torch.device]] = None, cluster_environment: Optional[ClusterEnvironment] = None, checkpoint_io: Optional[CheckpointIO] = None, precision_plugin: Optional[PrecisionPlugin] = None, training_opts: Optional["poptorch.Options"] = None, inference_opts: Optional["poptorch.Options"] = None, ) -> None: """ Arguments: device_iterations: Number of iterations to run on device at once before returning to host. This can be used as an optimization to speed up training. https://docs.graphcore.ai/projects/poptorch-user-guide/en/0.1.67/batching.html autoreport: Enable auto-reporting for IPUs using PopVision https://docs.graphcore.ai/projects/graphcore-popvision-user-guide/en/latest/graph/graph.html autoreport_dir: Optional directory to store autoReport output. training_opts: Optional ``poptorch.Options`` to override the default created options for training. inference_opts: Optional ``poptorch.Options`` to override the default created options for validation/testing and predicting. """ super().__init__( accelerator=accelerator, parallel_devices=parallel_devices, cluster_environment=cluster_environment, checkpoint_io=checkpoint_io, precision_plugin=precision_plugin, ) if not _IPU_AVAILABLE: raise MisconfigurationException( "The IPU Accelerator requires IPU devices to run. " "Learn more or get started with IPUs at https://www.graphcore.ai/getstarted" ) self.device_iterations = device_iterations self.autoreport = autoreport self.autoreport_dir = autoreport_dir self.poptorch_models = {} self._training_opts = training_opts self._inference_opts = inference_opts if self.autoreport: options = {"autoReport.all": self.autoreport} if self.autoreport_dir: self._fs = get_filesystem(str(self.autoreport_dir)) self._fs.makedirs(self.autoreport_dir, exist_ok=True) options["autoReport.directory"] = self.autoreport_dir os.environ["POPLAR_ENGINE_OPTIONS"] = json.dumps(options) def setup(self, trainer: "pl.Trainer") -> None: # set the `accumulate_grad_batches` property as early as possible self._handle_gradient_accumulation_steps() # patch the dataloader creation function with the custom `poptorch.DataLoader`. # this violates the intended control flow for the plugins, but since this is experimental, we have chosen # to use the simpler solution before adding abstractions to override the `DataLoader` class self._update_dataloader_original = pl.trainer.connectors.data_connector._update_dataloader pl.trainer.connectors.data_connector._update_dataloader = self._convert_to_poptorch_loader super().setup(trainer) model = LightningIPUModule(self.lightning_module, self.precision_plugin.precision) self.model = model # reset the backup self.poptorch_models = {} # Separate models are instantiated for different stages, but they share the same weights on host. # When validation/test models are run, weights are synced first. trainer_fn = self.lightning_module.trainer.state.fn if trainer_fn in (TrainerFn.FITTING, TrainerFn.TUNING): # Create model for training and validation which will run on fit training_opts = self.training_opts inference_opts = self.inference_opts optimizer = self.lightning_module.trainer.optimizers[0] model = poptorch.trainingModel(model=model, options=training_opts, optimizer=optimizer) self.poptorch_models[RunningStage.TRAINING] = model if self.lightning_module.trainer.enable_validation: model = poptorch.inferenceModel(model=model, options=inference_opts) self.poptorch_models[RunningStage.VALIDATING] = model elif trainer_fn == TrainerFn.VALIDATING: model = poptorch.inferenceModel(model=model, options=self.inference_opts) self.poptorch_models[RunningStage.VALIDATING] = model elif trainer_fn == TrainerFn.TESTING: model = poptorch.inferenceModel(model=model, options=self.inference_opts) self.poptorch_models[RunningStage.TESTING] = model elif trainer_fn == TrainerFn.PREDICTING: model = poptorch.inferenceModel(model=model, options=self.inference_opts) self.poptorch_models[RunningStage.PREDICTING] = model def setup_optimizers(self, trainer: "pl.Trainer") -> None: super().setup_optimizers(trainer) if len(self.optimizers) > 1: raise MisconfigurationException("IPUs currently only support one optimizer.") @property def replication_factor(self) -> int: if not self.lightning_module or not self.poptorch_models: # The plugin has been passed in by the user and has not been connected to the Trainer. # Check if the user has passed in custom poptorch.Options to infer number of IPUs being used. # In this scenario we prioritize the training options. if self._training_opts: return self._training_opts.replication_factor if self._inference_opts: return self._inference_opts.replication_factor return len(self.parallel_devices) stage = self.lightning_module.trainer.state.stage return self.poptorch_models[stage]._options.toDict()["replication_factor"] def _create_opts(self, training: bool) -> "poptorch.Options": opts = poptorch.Options() opts.deviceIterations(self.device_iterations) opts.replicationFactor(self.replication_factor) gradient_accumulation = self.lightning_module.trainer.accumulate_grad_batches if training else 1 opts.Training.gradientAccumulation(gradient_accumulation) if os.environ.get("PL_GLOBAL_SEED"): opts.randomSeed(int(os.environ["PL_GLOBAL_SEED"])) return opts @property def training_opts(self) -> "poptorch.Options": if self._training_opts is None: self._training_opts = self._create_opts(training=True) return self._training_opts @property def inference_opts(self) -> "poptorch.Options": if self._inference_opts is None: self._inference_opts = self._create_opts(training=False) return self._inference_opts @property def lightning_module(self) -> Optional["pl.LightningModule"]: return self.model.module if isinstance(self.model, LightningIPUModule) else self.model def _convert_to_poptorch_loader( self, dataloader: DataLoader, sampler, mode: Optional[RunningStage] = None ) -> "poptorch.DataLoader": dl_kwargs = _get_dataloader_init_kwargs(dataloader, sampler) # Override to drop last uneven batch, as IPUs does not support uneven inputs. dl_kwargs["drop_last"] = True opts = self.training_opts if mode == RunningStage.TRAINING else self.inference_opts dataloader = poptorch.DataLoader(**dl_kwargs, options=opts) return dataloader def _handle_gradient_accumulation_steps(self) -> None: """Override the trainer.accumulation_scheduler to act as ``accumulate_grad_batches=1`` if gradient accumulation has been set. ``optimizer_step`` will be called on every batch, and the IPU will handle grad accumulation internally. """ accumulation_scheduler = self.lightning_module.trainer.accumulation_scheduler if accumulation_scheduler.epochs != [0]: raise MisconfigurationException( "IPUs currently does not support different `accumulate_grad_batches` at different epochs." ) # TODO(@tchaton): Add support for accumulate_grad_batches being a dictionary accumulation_scheduler.scheduling.update({0: 1}) @property def _n_replicate(self): opts = self.training_opts if self.lightning_module.training else self.inference_opts accumulate_grad_batches = opts.Training.gradient_accumulation device_iterations = opts.device_iterations replication_factor = opts.replication_factor return replication_factor * device_iterations * accumulate_grad_batches def _prepare_input(self, args: Any): def to_tuple(x): return tuple(x) def to_tensor(x): return torch.tensor(x).unsqueeze(0).repeat(self._n_replicate) args = apply_to_collection(args, dtype=list, function=to_tuple) args = apply_to_collection(args, dtype=(int, float), function=to_tensor) return args def _step(self, stage: RunningStage, *args: Any, **kwargs: Any): args = self._prepare_input(args) poptorch_model = self.poptorch_models[stage] self.lightning_module._running_torchscript = True out = poptorch_model(*args, **kwargs) self.lightning_module._running_torchscript = False return out def training_step(self, *args, **kwargs) -> STEP_OUTPUT: with self.precision_plugin.train_step_context(): return self._step(RunningStage.TRAINING, *args, **kwargs) def validation_step(self, *args, **kwargs) -> Optional[STEP_OUTPUT]: with self.precision_plugin.val_step_context(): return self._step(RunningStage.VALIDATING, *args, **kwargs) def test_step(self, *args, **kwargs) -> Optional[STEP_OUTPUT]: with self.precision_plugin.test_step_context(): return self._step(RunningStage.TESTING, *args, **kwargs) def predict_step(self, *args, **kwargs) -> STEP_OUTPUT: with self.precision_plugin.predict_step_context(): return self._step(RunningStage.PREDICTING, *args, **kwargs) def teardown(self) -> None: super().teardown() # undo dataloader patching pl.trainer.connectors.data_connector._update_dataloader = self._update_dataloader_original for model in self.poptorch_models.values(): model.destroy() def _compiled(self, model: Any): # Required to ensure we only attach compiled models, as they are compiled lazily. return model._executable is not None def _detach_models(self): """Detaches all stage specific models from IPU devices.""" for k, model in self.poptorch_models.items(): if self._compiled(model) and model.isAttachedToDevice(): model.detachFromDevice() def _load_model(self, stage: str): """Loads the stage specific accelerator model onto device if compiled and not attached to IPU devices. Args: stage: The stage to load """ self._detach_models() model = self.poptorch_models[stage] if self._compiled(model) and not model.isAttachedToDevice(): model.attachToDevice() def on_train_start(self): self._load_model(RunningStage.TRAINING) def on_validation_start(self): self._load_model(RunningStage.VALIDATING) def on_test_start(self): self._load_model(RunningStage.TESTING) def on_predict_start(self): self._load_model(RunningStage.PREDICTING) def on_train_end(self): self._detach_models() def on_validation_end(self): self._detach_models() def on_test_end(self): self._detach_models() def on_predict_end(self): self._detach_models() def on_train_batch_start(self, batch: Any, batch_idx: int, dataloader_idx: int = 0) -> None: # Updates optimizer stats if LR scheduler modified the optimizer state optimizer = self.optimizers[0] self.poptorch_models[RunningStage.TRAINING].setOptimizer(optimizer) @property def on_gpu(self) -> bool: return False @property def root_device(self) -> torch.device: pass def model_to_device(self) -> None: pass @property def is_global_zero(self) -> bool: return True def reduce(self, tensor: Union[torch.Tensor, Any], *args: Any, **kwargs: Any) -> Union[torch.Tensor, Any]: return tensor def barrier(self, name: Optional[str] = None) -> None: pass def all_gather(self, tensor: torch.Tensor, group: Optional[Any] = None, sync_grads: bool = False) -> torch.Tensor: return tensor def broadcast(self, obj: object, src: int = 0) -> object: return obj