# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os from collections import UserList from multiprocessing.queues import SimpleQueue from typing import Any, Callable, Dict, List, NamedTuple, Optional, Union import numpy as np import torch import torch.distributed import torch.multiprocessing as mp from torch.nn import Module from torch.nn.parallel.distributed import DistributedDataParallel import pytorch_lightning as pl from pytorch_lightning.overrides import LightningDistributedModule from pytorch_lightning.overrides.distributed import prepare_for_backward from pytorch_lightning.plugins.environments.cluster_environment import ClusterEnvironment from pytorch_lightning.plugins.io.checkpoint_plugin import CheckpointIO from pytorch_lightning.plugins.precision import PrecisionPlugin from pytorch_lightning.strategies.parallel import ParallelStrategy from pytorch_lightning.trainer.states import TrainerFn, TrainerState from pytorch_lightning.utilities import _TORCH_GREATER_EQUAL_1_8, rank_zero_warn from pytorch_lightning.utilities.apply_func import apply_to_collection, move_data_to_device from pytorch_lightning.utilities.distributed import _revert_sync_batchnorm, distributed_available from pytorch_lightning.utilities.distributed import group as _group from pytorch_lightning.utilities.distributed import ( init_dist_connection, rank_zero_debug, rank_zero_only, ReduceOp, sync_ddp_if_available, ) from pytorch_lightning.utilities.enums import _StrategyType from pytorch_lightning.utilities.model_helpers import is_overridden from pytorch_lightning.utilities.seed import reset_seed from pytorch_lightning.utilities.types import _PATH, STEP_OUTPUT if _TORCH_GREATER_EQUAL_1_8: from pytorch_lightning.utilities.distributed import register_ddp_comm_hook log = logging.getLogger(__name__) class DDPSpawnStrategy(ParallelStrategy): """Spawns processes using the :func:`torch.multiprocessing.spawn` method and joins processes after training finishes.""" distributed_backend = _StrategyType.DDP_SPAWN def __init__( self, accelerator: Optional["pl.accelerators.accelerator.Accelerator"] = None, parallel_devices: Optional[List[torch.device]] = None, cluster_environment: Optional[ClusterEnvironment] = None, checkpoint_io: Optional[CheckpointIO] = None, precision_plugin: Optional[PrecisionPlugin] = None, ddp_comm_state: Optional[object] = None, ddp_comm_hook: Optional[callable] = None, ddp_comm_wrapper: Optional[callable] = None, **kwargs: Any, ): super().__init__( accelerator=accelerator, parallel_devices=parallel_devices, cluster_environment=cluster_environment, checkpoint_io=checkpoint_io, precision_plugin=precision_plugin, ) self._num_nodes = 1 self.sync_batchnorm = False self._ddp_kwargs = kwargs self.num_processes = len(parallel_devices) if parallel_devices is not None else 0 self._ddp_comm_state = ddp_comm_state self._ddp_comm_hook = ddp_comm_hook self._ddp_comm_wrapper = ddp_comm_wrapper self._local_rank = 0 self.set_world_ranks() @property def num_nodes(self) -> int: return self._num_nodes @num_nodes.setter def num_nodes(self, num_nodes: int) -> None: # note that world ranks is related to num_nodes, when resetting it, need to reset world ranks self._num_nodes = num_nodes self.set_world_ranks() @property def local_rank(self) -> int: return self._local_rank @property def root_device(self): return self.parallel_devices[self.local_rank] @property def distributed_sampler_kwargs(self): distributed_sampler_kwargs = dict(num_replicas=(self.num_nodes * self.num_processes), rank=self.global_rank) return distributed_sampler_kwargs @property def _is_single_process_single_device(self): return True def setup(self, trainer: "pl.Trainer") -> None: os.environ["MASTER_PORT"] = str(self.cluster_environment.main_port) super().setup(trainer) # move the model to the correct device self.model_to_device() if self.sync_batchnorm: self.model = self.configure_sync_batchnorm(self.model) # skip wrapping the model if we are not fitting as no gradients need to be exchanged trainer_fn = self.lightning_module.trainer.state.fn if trainer_fn == TrainerFn.FITTING: self.configure_ddp() def _setup_model(self, model: Module) -> DistributedDataParallel: """Wraps the model into a :class:`~torch.nn.parallel.distributed.DistributedDataParallel` module.""" return DistributedDataParallel(module=model, device_ids=self.determine_ddp_device_ids(), **self._ddp_kwargs) def set_world_ranks(self, process_idx: int = 0) -> None: self._local_rank = process_idx if self.cluster_environment is None: return self.cluster_environment.set_global_rank(self.node_rank * self.num_processes + self.local_rank) self.cluster_environment.set_world_size(self.num_nodes * self.num_processes) rank_zero_only.rank = self.cluster_environment.global_rank() def get_mp_spawn_kwargs(self, trainer: Optional["pl.Trainer"] = None) -> Dict[str, Any]: return {"nprocs": self.num_processes} def spawn(self, function: Callable, *args: Any, **kwargs: Any) -> Optional[Union[Any, "_SpawnOutput"]]: """Spawn processes that run the given function. Args: function: The function to spawn processes from. *args: Optional positional arguments that will be passed to the function in addition to the process index. These arguments must be pickleable. **kwargs: Optional named arguments that will be passed to the function in addition to the process index. These arguments must be pickleable. Return: The output of the function of process 0. """ os.environ["MASTER_PORT"] = str(self.cluster_environment.main_port) context = mp.get_context("spawn") return_queue = context.SimpleQueue() mp.spawn(self._wrapped_function, args=(function, args, kwargs, return_queue), nprocs=self.num_processes) return return_queue.get() def _wrapped_function( self, process_idx: int, function: Callable, args: Any, kwargs: Any, return_queue: SimpleQueue ) -> None: self._worker_setup(process_idx) result = function(*args, **kwargs) if self.local_rank == 0: return_queue.put(move_data_to_device(result, "cpu")) def _worker_setup(self, process_idx: int): reset_seed() self.set_world_ranks(process_idx) rank_zero_only.rank = self.global_rank init_dist_connection( self.cluster_environment, self.torch_distributed_backend, self.global_rank, self.world_size ) def pre_configure_ddp(self): # if unset, default `find_unused_parameters` `True` # Many models require setting this parameter to True, as there are corner cases # when not all parameter backward hooks are fired by the autograd engine even if require_grad is set to True. # This flag does come with a performance hit, so it is suggested to disable in cases where it is possible. self._ddp_kwargs["find_unused_parameters"] = self._ddp_kwargs.get("find_unused_parameters", True) if not self.lightning_module.automatic_optimization and not self._ddp_kwargs.get( "find_unused_parameters", False ): # TODO: PyTorch 1.7.0 DDP introduces `self.reducer._rebuild_buckets()` breaking manual_optimization rank_zero_warn( "From PyTorch 1.7.0, Lightning `manual_optimization` needs to set `find_unused_parameters=True` to" " properly work with DDP. Using `find_unused_parameters=True`." ) self._ddp_kwargs["find_unused_parameters"] = True def _register_ddp_hooks(self) -> None: # currently, DDP communication hooks only work with NCCL backend and SPSD (single process single device) mode # https://github.com/pytorch/pytorch/blob/v1.8.0/torch/nn/parallel/distributed.py#L1080-L1084 if _TORCH_GREATER_EQUAL_1_8 and self.on_gpu and self._is_single_process_single_device: register_ddp_comm_hook( model=self.model, ddp_comm_state=self._ddp_comm_state, ddp_comm_hook=self._ddp_comm_hook, ddp_comm_wrapper=self._ddp_comm_wrapper, ) def configure_ddp(self) -> None: self.pre_configure_ddp() self.model = self._setup_model(LightningDistributedModule(self.model)) self._register_ddp_hooks() def determine_ddp_device_ids(self): if self.root_device.type == "cpu": return None return [self.root_device.index] def _collect_rank_zero_results(self, trainer: "pl.Trainer", results: Any) -> Optional["_SpawnOutput"]: rank_zero_debug("Finalizing the DDP spawn environment.") checkpoint_callback = trainer.checkpoint_callback best_model_path = checkpoint_callback.best_model_path if checkpoint_callback else None # requires to compute the state_dict on all processes in case Metrics are present state_dict = self.lightning_module.state_dict() if self.global_rank != 0: return # save the last weights weights_path = None if trainer.state.fn == TrainerFn.FITTING: weights_path = os.path.join(trainer.default_root_dir, ".temp.ckpt") self.checkpoint_io.save_checkpoint(state_dict, weights_path) # adds the `callback_metrics` to the queue extra = _FakeQueue() if is_overridden("add_to_queue", self.lightning_module): # TODO: Remove the if in v1.7 self.lightning_module.add_to_queue(extra) self.add_to_queue(trainer, extra) return _SpawnOutput(best_model_path, weights_path, trainer.state, results, extra) def _recover_results_in_main_process(self, spawn_output: "_SpawnOutput", trainer: "pl.Trainer") -> None: # transfer back the best path to the trainer if trainer.checkpoint_callback: trainer.checkpoint_callback.best_model_path = spawn_output.best_model_path # TODO: pass also best score # load last weights if spawn_output.weights_path is not None: ckpt = self.checkpoint_io.load_checkpoint( spawn_output.weights_path, map_location=(lambda storage, loc: storage) ) self.lightning_module.load_state_dict(ckpt) self.checkpoint_io.remove_checkpoint(spawn_output.weights_path) trainer.state = spawn_output.trainer_state # get the `callback_metrics` and set it to the trainer if is_overridden("get_from_queue", self.lightning_module): # only in case the user does not override it. # TODO: Remove the if in v1.7 self.lightning_module.get_from_queue(spawn_output.extra) self.get_from_queue(trainer, spawn_output.extra) def barrier(self, *args, **kwargs) -> None: if not distributed_available(): return if _TORCH_GREATER_EQUAL_1_8 and torch.distributed.get_backend() == "nccl": torch.distributed.barrier(device_ids=self.determine_ddp_device_ids()) else: torch.distributed.barrier() def broadcast(self, obj: object, src: int = 0) -> object: if not distributed_available(): return obj obj = [obj] if self.global_rank != src: obj = [None] torch.distributed.broadcast_object_list(obj, src, group=_group.WORLD) return obj[0] def model_to_device(self): if self.root_device.type == "cuda": # set the device on the spawned subprocesses torch.cuda.set_device(self.root_device) self.model.to(self.root_device) def pre_backward(self, closure_loss: torch.Tensor) -> None: """Run before precision plugin executes backward.""" if not self.lightning_module.automatic_optimization: prepare_for_backward(self.model, closure_loss) def reduce(self, tensor, group: Optional[Any] = None, reduce_op: Union[ReduceOp, str] = "mean") -> torch.Tensor: """Reduces a tensor from several distributed processes to one aggregated tensor. Args: tensor: the tensor to sync and reduce group: the process group to gather results from. Defaults to all processes (world) reduce_op: the reduction operation. Defaults to 'mean'/'avg'. Can also be a string 'sum' to calculate the sum during reduction. Return: reduced value, except when the input was not a tensor the output remains is unchanged """ if isinstance(tensor, torch.Tensor): tensor = sync_ddp_if_available(tensor, group, reduce_op=reduce_op) return tensor def training_step(self, *args, **kwargs) -> STEP_OUTPUT: with self.precision_plugin.train_step_context(): return self.model(*args, **kwargs) def validation_step(self, *args, **kwargs) -> Optional[STEP_OUTPUT]: with self.precision_plugin.val_step_context(): if isinstance(self.model, DistributedDataParallel): # used when calling `trainer.fit` return self.model(*args, **kwargs) else: # used when calling `trainer.validate` return self.lightning_module.validation_step(*args, **kwargs) def test_step(self, *args, **kwargs) -> Optional[STEP_OUTPUT]: with self.precision_plugin.test_step_context(): return self.lightning_module.test_step(*args, **kwargs) def predict_step(self, *args, **kwargs) -> STEP_OUTPUT: with self.precision_plugin.predict_step_context(): return self.lightning_module.predict_step(*args, **kwargs) def post_training_step(self): if not self.lightning_module.automatic_optimization: self.model.require_backward_grad_sync = True def add_to_queue(self, trainer: "pl.Trainer", queue: "_FakeQueue") -> None: """Appends the :attr:`trainer.callback_metrics` dictionary to the given queue. To avoid issues with memory sharing, we cast the data to numpy. Args: trainer: reference to the Trainer. queue: the instance of the queue to append the data. """ callback_metrics: dict = apply_to_collection( trainer.callback_metrics, torch.Tensor, lambda x: x.cpu().numpy() ) # send as numpy to avoid issues with memory sharing queue.put(callback_metrics) def get_from_queue(self, trainer: "pl.Trainer", queue: "_FakeQueue") -> None: """Retrieve the :attr:`trainer.callback_metrics` dictionary from the given queue. To preserve consistency, we cast back the data to ``torch.Tensor``. Args: trainer: reference to the Trainer. queue: the instance of the queue from where to get the data. """ # NOTE: `add_to_queue` needs to be called before callback_metrics: dict = queue.get() trainer.callback_metrics.update(apply_to_collection(callback_metrics, np.ndarray, lambda x: torch.tensor(x))) @classmethod def register_strategies(cls, strategy_registry: Dict) -> None: strategy_registry.register( "ddp_spawn_find_unused_parameters_false", cls, description="DDPSpawn Strategy with `find_unused_parameters` as False", find_unused_parameters=False, ) def teardown(self) -> None: super().teardown() if isinstance(self.model, DistributedDataParallel): self.model = self.lightning_module if self.sync_batchnorm: self.model = _revert_sync_batchnorm(self.model) if self.on_gpu: # GPU teardown self.lightning_module.cpu() # clean up memory torch.cuda.empty_cache() class _FakeQueue(UserList): """Simulates a :class:`torch.multiprocessing.queue.SimpleQueue` interface using the Python list.""" def get(self) -> Any: return self.pop(0) def put(self, item: Any) -> None: self.append(item) def empty(self) -> bool: return len(self) == 0 class _SpawnOutput(NamedTuple): best_model_path: Optional[_PATH] weights_path: Optional[_PATH] trainer_state: TrainerState trainer_results: Any extra: _FakeQueue