# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from unittest import mock from unittest.mock import ANY, call, MagicMock from pytorch_lightning import Trainer from tests.base import BoringModel @mock.patch("torch.save") # need to mock torch.save or we get pickle error def test_trainer_callback_system(torch_save): """Test the callback system.""" model = BoringModel() callback_mock = MagicMock() trainer_options = dict( callbacks=[callback_mock], max_epochs=1, limit_val_batches=1, limit_train_batches=3, limit_test_batches=2, progress_bar_refresh_rate=0, ) # no call yet callback_mock.assert_not_called() # fit model trainer = Trainer(**trainer_options) # check that only the to calls exists assert trainer.callbacks[0] == callback_mock assert callback_mock.method_calls == [ call.on_init_start(trainer), call.on_init_end(trainer), ] trainer.fit(model) assert callback_mock.method_calls == [ call.on_init_start(trainer), call.on_init_end(trainer), call.on_before_accelerator_backend_setup(trainer, model), call.setup(trainer, model, 'fit'), call.on_fit_start(trainer, model), call.on_pretrain_routine_start(trainer, model), call.on_pretrain_routine_end(trainer, model), call.on_sanity_check_start(trainer, model), call.on_validation_start(trainer, model), call.on_validation_epoch_start(trainer, model), call.on_validation_batch_start(trainer, model, ANY, 0, 0), call.on_validation_batch_end(trainer, model, ANY, ANY, 0, 0), call.on_validation_epoch_end(trainer, model), call.on_validation_end(trainer, model), call.on_sanity_check_end(trainer, model), call.on_train_start(trainer, model), call.on_epoch_start(trainer, model), call.on_train_epoch_start(trainer, model), call.on_batch_start(trainer, model), call.on_train_batch_start(trainer, model, ANY, 0, 0), call.on_after_backward(trainer, model), call.on_before_zero_grad(trainer, model, trainer.optimizers[0]), call.on_train_batch_end(trainer, model, ANY, ANY, 0, 0), call.on_batch_end(trainer, model), call.on_batch_start(trainer, model), call.on_train_batch_start(trainer, model, ANY, 1, 0), call.on_after_backward(trainer, model), call.on_before_zero_grad(trainer, model, trainer.optimizers[0]), call.on_train_batch_end(trainer, model, ANY, ANY, 1, 0), call.on_batch_end(trainer, model), call.on_batch_start(trainer, model), call.on_train_batch_start(trainer, model, ANY, 2, 0), call.on_after_backward(trainer, model), call.on_before_zero_grad(trainer, model, trainer.optimizers[0]), call.on_train_batch_end(trainer, model, ANY, ANY, 2, 0), call.on_batch_end(trainer, model), call.on_validation_start(trainer, model), call.on_validation_epoch_start(trainer, model), call.on_validation_batch_start(trainer, model, ANY, 0, 0), call.on_validation_batch_end(trainer, model, ANY, ANY, 0, 0), call.on_validation_epoch_end(trainer, model), call.on_validation_end(trainer, model), call.on_save_checkpoint(trainer, model), call.on_train_epoch_end(trainer, model, ANY), call.on_epoch_end(trainer, model), call.on_train_end(trainer, model), call.on_fit_end(trainer, model), call.teardown(trainer, model, 'fit'), ] callback_mock.reset_mock() trainer = Trainer(**trainer_options) trainer.test(model) assert callback_mock.method_calls == [ call.on_init_start(trainer), call.on_init_end(trainer), call.on_before_accelerator_backend_setup(trainer, model), call.setup(trainer, model, 'test'), call.on_fit_start(trainer, model), call.on_test_start(trainer, model), call.on_test_epoch_start(trainer, model), call.on_test_batch_start(trainer, model, ANY, 0, 0), call.on_test_batch_end(trainer, model, ANY, ANY, 0, 0), call.on_test_batch_start(trainer, model, ANY, 1, 0), call.on_test_batch_end(trainer, model, ANY, ANY, 1, 0), call.on_test_epoch_end(trainer, model), call.on_test_end(trainer, model), call.on_fit_end(trainer, model), call.teardown(trainer, model, 'fit'), call.teardown(trainer, model, 'test'), ]