# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from unittest import mock import torch from torch.utils.data.dataloader import DataLoader from pytorch_lightning import Trainer from pytorch_lightning.loops import EvaluationEpochLoop from pytorch_lightning.utilities.model_helpers import is_overridden from tests.helpers.boring_model import BoringModel, RandomDataset from tests.helpers.runif import RunIf @mock.patch("pytorch_lightning.loops.dataloader.evaluation_loop.EvaluationLoop._on_evaluation_epoch_end") def test_on_evaluation_epoch_end(eval_epoch_end_mock, tmpdir): """Tests that `on_evaluation_epoch_end` is called for `on_validation_epoch_end` and `on_test_epoch_end` hooks.""" model = BoringModel() trainer = Trainer( default_root_dir=tmpdir, limit_train_batches=2, limit_val_batches=2, max_epochs=2, enable_model_summary=False ) trainer.fit(model) # sanity + 2 epochs assert eval_epoch_end_mock.call_count == 3 trainer.test() # sanity + 2 epochs + called once for test assert eval_epoch_end_mock.call_count == 4 @mock.patch( "pytorch_lightning.trainer.connectors.logger_connector.logger_connector.LoggerConnector.log_eval_end_metrics" ) def test_log_epoch_metrics_before_on_evaluation_end(update_eval_epoch_metrics_mock, tmpdir): """Test that the epoch metrics are logged before the `on_evaluation_end` hook is fired.""" order = [] update_eval_epoch_metrics_mock.side_effect = lambda: order.append("log_epoch_metrics") class LessBoringModel(BoringModel): def on_validation_end(self): order.append("on_validation_end") super().on_validation_end() trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=1, enable_model_summary=False, num_sanity_val_steps=0) trainer.fit(LessBoringModel()) assert order == ["log_epoch_metrics", "on_validation_end"] @RunIf(min_gpus=1) def test_memory_consumption_validation(tmpdir): """Test that the training batch is no longer in GPU memory when running validation.""" initial_memory = torch.cuda.memory_allocated(0) class BoringLargeBatchModel(BoringModel): @property def num_params(self): return sum(p.numel() for p in self.parameters()) def train_dataloader(self): # batch target memory >= 100x boring_model size batch_size = self.num_params * 100 // 32 + 1 return DataLoader(RandomDataset(32, 5000), batch_size=batch_size) def val_dataloader(self): return self.train_dataloader() def training_step(self, batch, batch_idx): # there is a batch and the boring model, but not two batches on gpu, assume 32 bit = 4 bytes lower = 101 * self.num_params * 4 upper = 201 * self.num_params * 4 current = torch.cuda.memory_allocated(0) assert lower < current assert current - initial_memory < upper return super().training_step(batch, batch_idx) def validation_step(self, batch, batch_idx): # there is a batch and the boring model, but not two batches on gpu, assume 32 bit = 4 bytes lower = 101 * self.num_params * 4 upper = 201 * self.num_params * 4 current = torch.cuda.memory_allocated(0) assert lower < current assert current - initial_memory < upper return super().validation_step(batch, batch_idx) torch.cuda.empty_cache() trainer = Trainer( accelerator="gpu", devices=1, default_root_dir=tmpdir, fast_dev_run=2, move_metrics_to_cpu=True, enable_model_summary=False, ) trainer.fit(BoringLargeBatchModel()) def test_evaluation_loop_doesnt_store_outputs_if_epoch_end_not_overridden(tmpdir): did_assert = False class TestModel(BoringModel): def on_test_batch_end(self, outputs, *_): # check `test_step` returns something assert outputs is not None class TestLoop(EvaluationEpochLoop): def on_advance_end(self): # should be empty assert not self._outputs # sanity check nonlocal did_assert did_assert = True super().on_advance_end() model = TestModel() model.test_epoch_end = None assert not is_overridden("test_epoch_end", model) trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=3) trainer.test_loop.replace(epoch_loop=TestLoop) trainer.test(model) assert did_assert