# Copyright The Lightning AI team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from os import path import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torchvision.transforms as T from lightning.fabric import Fabric, seed_everything from sklearn import model_selection from torch.utils.data import DataLoader, SubsetRandomSampler from torchmetrics.classification import Accuracy from torchvision.datasets import MNIST DATASETS_PATH = path.join(path.dirname(__file__), "..", "..", "..", "Datasets") class Net(nn.Module): def __init__(self) -> None: super().__init__() self.conv1 = nn.Conv2d(1, 32, 3, 1) self.conv2 = nn.Conv2d(32, 64, 3, 1) self.dropout1 = nn.Dropout(0.25) self.dropout2 = nn.Dropout(0.5) self.fc1 = nn.Linear(9216, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x, 2) x = self.dropout1(x) x = torch.flatten(x, 1) x = self.fc1(x) x = F.relu(x) x = self.dropout2(x) x = self.fc2(x) return F.log_softmax(x, dim=1) def train_dataloader(model, data_loader, optimizer, fabric, epoch, hparams, fold): # TRAINING LOOP model.train() for batch_idx, (data, target) in enumerate(data_loader): # NOTE: no need to call `.to(device)` on the data, target optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target) fabric.backward(loss) # instead of loss.backward() optimizer.step() if (batch_idx == 0) or ((batch_idx + 1) % hparams.log_interval == 0): print( f"Train Epoch: {epoch} [{batch_idx * len(data)}/{len(data_loader.dataset)}" f" ({100.0 * batch_idx / len(data_loader):.0f}%)]\tLoss: {loss.item():.6f}" ) if hparams.dry_run: break def validate_dataloader(model, data_loader, fabric, hparams, fold, acc_metric): model.eval() loss = 0 with torch.no_grad(): for data, target in data_loader: # NOTE: no need to call `.to(device)` on the data, target output = model(data) loss += F.nll_loss(output, target, reduction="sum").item() # Accuracy with torchmetrics acc_metric.update(output, target) if hparams.dry_run: break # all_gather is used to aggregate the value across processes loss = fabric.all_gather(loss).sum() / len(data_loader.dataset) # compute acc acc = acc_metric.compute() * 100 print(f"\nFor fold: {fold} Validation set: Average loss: {loss:.4f}, Accuracy: ({acc:.0f}%)\n") return acc def run(hparams): # Create the Lightning Fabric object. The parameters like accelerator, strategy, devices etc. will be proided # by the command line. See all options: `fabric run --help` fabric = Fabric() seed_everything(hparams.seed) # instead of torch.manual_seed(...) transform = T.Compose([T.ToTensor(), T.Normalize((0.1307,), (0.3081,))]) # Let rank 0 download the data first, then everyone will load MNIST with fabric.rank_zero_first(local=False): # set `local=True` if your filesystem is not shared between machines dataset = MNIST(DATASETS_PATH, train=True, download=True, transform=transform) # Loop over different folds (shuffle = False by default so reproducible) folds = hparams.folds kfold = model_selection.KFold(n_splits=folds) # initialize n_splits models and optimizers models = [Net() for _ in range(kfold.n_splits)] optimizers = [optim.Adadelta(model.parameters(), lr=hparams.lr) for model in models] # fabric setup for models and optimizers for i in range(kfold.n_splits): models[i], optimizers[i] = fabric.setup(models[i], optimizers[i]) # Accuracy using torchmetrics acc_metric = Accuracy(task="multiclass", num_classes=10).to(fabric.device) # loop over epochs for epoch in range(1, hparams.epochs + 1): # loop over folds epoch_acc = 0 for fold, (train_ids, val_ids) in enumerate(kfold.split(dataset)): print(f"Working on fold {fold}") # initialize dataloaders based on folds batch_size = hparams.batch_size train_loader = DataLoader(dataset, batch_size=batch_size, sampler=SubsetRandomSampler(train_ids)) val_loader = DataLoader(dataset, batch_size=batch_size, sampler=SubsetRandomSampler(val_ids)) # set up dataloaders to move data to the correct device train_loader, val_loader = fabric.setup_dataloaders(train_loader, val_loader) # get model and optimizer for the current fold model, optimizer = models[fold], optimizers[fold] # train and validate train_dataloader(model, train_loader, optimizer, fabric, epoch, hparams, fold) epoch_acc += validate_dataloader(model, val_loader, fabric, hparams, fold, acc_metric) acc_metric.reset() # log epoch metrics print(f"Epoch {epoch} - Average acc: {epoch_acc / kfold.n_splits}") if hparams.dry_run: break # When using distributed training, use `fabric.save` # to ensure the current process is allowed to save a checkpoint if hparams.save_model: fabric.save(model.state_dict(), "mnist_cnn.pt") if __name__ == "__main__": # Arguments can be passed in through the CLI as normal and will be parsed here # Example: # fabric run image_classifier.py accelerator=cuda --epochs=3 parser = argparse.ArgumentParser(description="Fabric MNIST K-Fold Cross Validation Example") parser.add_argument( "--batch-size", type=int, default=64, metavar="N", help="input batch size for training (default: 64)" ) parser.add_argument("--epochs", type=int, default=14, metavar="N", help="number of epochs to train (default: 14)") parser.add_argument("--lr", type=float, default=1.0, metavar="LR", help="learning rate (default: 1.0)") parser.add_argument("--gamma", type=float, default=0.7, metavar="M", help="Learning rate step gamma (default: 0.7)") parser.add_argument("--dry-run", action="store_true", default=False, help="quickly check a single pass") parser.add_argument("--seed", type=int, default=1, metavar="S", help="random seed (default: 1)") parser.add_argument( "--log-interval", type=int, default=10, metavar="N", help="how many batches to wait before logging training status", ) parser.add_argument("--folds", type=int, default=5, help="number of folds for k-fold cross validation") parser.add_argument("--save-model", action="store_true", default=False, help="For Saving the current Model") hparams = parser.parse_args() run(hparams)