Comet.ml
========
To use `Comet.ml `_ first install the comet package:
.. code-block:: bash
pip install comet-ml
Configure the logger and pass it to the :class:`~pytorch_lightning.trainer.trainer.Trainer`:
.. testcode::
:skipif: not _COMET_AVAILABLE
from pytorch_lightning.loggers import CometLogger
comet_logger = CometLogger(api_key="YOUR_COMET_API_KEY")
trainer = Trainer(logger=comet_logger)
Access the comet logger from any function (except the LightningModule *init*) to use its API for tracking advanced artifacts
.. code-block:: python
class LitModel(LightningModule):
def any_lightning_module_function_or_hook(self):
comet = self.logger.experiment
fake_images = torch.Tensor(32, 3, 28, 28)
comet.add_image("generated_images", fake_images, 0)
Here's the full documentation for the :class:`~pytorch_lightning.loggers.CometLogger`.
----
MLflow
======
To use `MLflow `_ first install the MLflow package:
.. code-block:: bash
pip install mlflow
Configure the logger and pass it to the :class:`~pytorch_lightning.trainer.trainer.Trainer`:
.. testcode::
:skipif: not _MLFLOW_AVAILABLE
from pytorch_lightning.loggers import MLFlowLogger
mlf_logger = MLFlowLogger(experiment_name="lightning_logs", tracking_uri="file:./ml-runs")
trainer = Trainer(logger=mlf_logger)
Access the mlflow logger from any function (except the LightningModule *init*) to use its API for tracking advanced artifacts
.. code-block:: python
class LitModel(LightningModule):
def any_lightning_module_function_or_hook(self):
mlf_logger = self.logger.experiment
fake_images = torch.Tensor(32, 3, 28, 28)
mlf_logger.add_image("generated_images", fake_images, 0)
Here's the full documentation for the :class:`~pytorch_lightning.loggers.MLFlowLogger`.
----
Neptune.ai
==========
To use `Neptune.ai `_ first install the neptune package:
.. code-block:: bash
pip install neptune-client
or with conda:
.. code-block:: bash
conda install -c conda-forge neptune-client
Configure the logger and pass it to the :class:`~pytorch_lightning.trainer.trainer.Trainer`:
.. testcode::
:skipif: not _NEPTUNE_AVAILABLE
from pytorch_lightning.loggers import NeptuneLogger
neptune_logger = NeptuneLogger(
api_key="ANONYMOUS", # replace with your own
project="common/pytorch-lightning-integration", # format ""
)
trainer = Trainer(logger=neptune_logger)
Access the neptune logger from any function (except the LightningModule *init*) to use its API for tracking advanced artifacts
.. code-block:: python
class LitModel(LightningModule):
def any_lightning_module_function_or_hook(self):
neptune_logger = self.logger.experiment["your/metadata/structure"]
neptune_logger.log(metadata)
Here's the full documentation for the :class:`~pytorch_lightning.loggers.NeptuneLogger`.
----
Tensorboard
===========
`TensorBoard `_ already comes installed with Lightning. If you removed the install install the following package.
.. code-block:: bash
pip install tensorboard
Configure the logger and pass it to the :class:`~pytorch_lightning.trainer.trainer.Trainer`:
.. code-block:: python
from pytorch_lightning.loggers import TensorBoardLogger
logger = TensorBoardLogger()
trainer = Trainer(logger=logger)
Access the tensorboard logger from any function (except the LightningModule *init*) to use its API for tracking advanced artifacts
.. code-block:: python
class LitModel(LightningModule):
def any_lightning_module_function_or_hook(self):
tensorboard_logger = self.logger.experiment
fake_images = torch.Tensor(32, 3, 28, 28)
tensorboard_logger.add_image("generated_images", fake_images, 0)
Here's the full documentation for the :class:`~pytorch_lightning.loggers.TensorBoardLogger`.
----
Weights and Biases
==================
To use `Weights and Biases `_ (wandb) first install the wandb package:
.. code-block:: bash
pip install wandb
Configure the logger and pass it to the :class:`~pytorch_lightning.trainer.trainer.Trainer`:
.. testcode::
:skipif: not _WANDB_AVAILABLE
from pytorch_lightning.loggers import WandbLogger
wandb_logger = WandbLogger(project="MNIST", log_model="all")
trainer = Trainer(logger=wandb_logger)
# log gradients and model topology
wandb_logger.watch(model)
Access the wandb logger from any function (except the LightningModule *init*) to use its API for tracking advanced artifacts
.. code-block:: python
class MyModule(LightningModule):
def any_lightning_module_function_or_hook(self):
wandb_logger = self.logger.experiment
fake_images = torch.Tensor(32, 3, 28, 28)
# Option 1
wandb_logger.log({"generated_images": [wandb.Image(fake_images, caption="...")]})
# Option 2 for specifically logging images
wandb_logger.log_image(key="generated_images", images=[fake_images])
Here's the full documentation for the :class:`~pytorch_lightning.loggers.WandbLogger`.
`Demo in Google Colab `__ with hyperparameter search and model logging.
----
Use multiple exp managers
=========================
To use multiple experiment managers at the same time, pass a list to the *logger* :class:`~pytorch_lightning.trainer.trainer.Trainer` argument.
.. testcode::
:skipif: not _WANDB_AVAILABLE
from pytorch_lightning.loggers import TensorBoardLogger, WandbLogger
logger1 = TensorBoardLogger()
logger2 = WandbLogger()
trainer = Trainer(logger=[logger1, logger2])
Access all loggers from any function (except the LightningModule *init*) to use their APIs for tracking advanced artifacts
.. code-block:: python
class MyModule(LightningModule):
def any_lightning_module_function_or_hook(self):
tensorboard_logger = self.logger.experiment[0]
wandb_logger = self.logger.experiment[1]
fake_images = torch.Tensor(32, 3, 28, 28)
tensorboard_logger.add_image("generated_images", fake_images, 0)
wandb_logger.add_image("generated_images", fake_images, 0)