## Tensor Parallel and 2D Parallel This example shows how to apply tensor-parallelism to your model (here Llama 3 7B) with the `ModelParallelStrategy`, and how it can be combined with FSDP (2D parallelism). PyTorch 2.3+ and a machine with at least 4 GPUs and 24 GB memory each are required to run this example. ```bash pip install 'torch>=2.3' ``` Navigate to this example folder and run the training script: ```bash cd examples/pytorch/tensor_parallel python train.py ``` You should see an output like this: ``` GPU available: True (cuda), used: True TPU available: False, using: 0 TPU cores HPU available: False, using: 0 HPUs Number of model parameters: 6.7 B Starting training ... Initializing distributed: GLOBAL_RANK: 0, MEMBER: 1/4 Initializing distributed: GLOBAL_RANK: 1, MEMBER: 2/4 Initializing distributed: GLOBAL_RANK: 3, MEMBER: 4/4 Initializing distributed: GLOBAL_RANK: 2, MEMBER: 3/4 ---------------------------------------------------------------------------------------------------- distributed_backend=nccl All distributed processes registered. Starting with 4 processes ---------------------------------------------------------------------------------------------------- LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1,2,3] LOCAL_RANK: 3 - CUDA_VISIBLE_DEVICES: [0,1,2,3] LOCAL_RANK: 1 - CUDA_VISIBLE_DEVICES: [0,1,2,3] LOCAL_RANK: 2 - CUDA_VISIBLE_DEVICES: [0,1,2,3] Epoch 0: 100%|█████████████████████████████████████████████| 10/10 [01:49<00:00, 0.09it/s, v_num=2] `Trainer.fit` stopped: `max_epochs=1` reached. Saving a (distributed) checkpoint ... Training successfully completed! Peak memory usage: 36.73 GB ``` > \[!NOTE\] > The `ModelParallelStrategy` is experimental and subject to change. Report issues on [GitHub](https://github.com/Lightning-AI/pytorch-lightning/issues).