[Refactor] Improve auto-encoder example (#9402)
This commit is contained in:
parent
81687aade1
commit
ffd275f5b1
|
@ -15,6 +15,7 @@
|
|||
|
||||
To run: python autoencoder.py --trainer.max_epochs=50
|
||||
"""
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
@ -24,11 +25,82 @@ from torch.utils.data import DataLoader, random_split
|
|||
import pytorch_lightning as pl
|
||||
from pl_examples import _DATASETS_PATH, cli_lightning_logo
|
||||
from pl_examples.basic_examples.mnist_datamodule import MNIST
|
||||
from pytorch_lightning.utilities import rank_zero_only
|
||||
from pytorch_lightning.utilities.cli import LightningCLI
|
||||
from pytorch_lightning.utilities.imports import _TORCHVISION_AVAILABLE
|
||||
|
||||
if _TORCHVISION_AVAILABLE:
|
||||
import torchvision
|
||||
from torchvision import transforms
|
||||
from torchvision.utils import save_image
|
||||
|
||||
|
||||
class ImageSampler(pl.callbacks.Callback):
|
||||
def __init__(
|
||||
self,
|
||||
num_samples: int = 3,
|
||||
nrow: int = 8,
|
||||
padding: int = 2,
|
||||
normalize: bool = True,
|
||||
norm_range: Optional[Tuple[int, int]] = None,
|
||||
scale_each: bool = False,
|
||||
pad_value: int = 0,
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
num_samples: Number of images displayed in the grid. Default: ``3``.
|
||||
nrow: Number of images displayed in each row of the grid.
|
||||
The final grid size is ``(B / nrow, nrow)``. Default: ``8``.
|
||||
padding: Amount of padding. Default: ``2``.
|
||||
normalize: If ``True``, shift the image to the range (0, 1),
|
||||
by the min and max values specified by :attr:`range`. Default: ``False``.
|
||||
norm_range: Tuple (min, max) where min and max are numbers,
|
||||
then these numbers are used to normalize the image. By default, min and max
|
||||
are computed from the tensor.
|
||||
scale_each: If ``True``, scale each image in the batch of
|
||||
images separately rather than the (min, max) over all images. Default: ``False``.
|
||||
pad_value: Value for the padded pixels. Default: ``0``.
|
||||
"""
|
||||
if not _TORCHVISION_AVAILABLE: # pragma: no cover
|
||||
raise ModuleNotFoundError("You want to use `torchvision` which is not installed yet.")
|
||||
|
||||
super().__init__()
|
||||
self.num_samples = num_samples
|
||||
self.nrow = nrow
|
||||
self.padding = padding
|
||||
self.normalize = normalize
|
||||
self.norm_range = norm_range
|
||||
self.scale_each = scale_each
|
||||
self.pad_value = pad_value
|
||||
|
||||
def _to_grid(self, images):
|
||||
return torchvision.utils.make_grid(
|
||||
tensor=images,
|
||||
nrow=self.nrow,
|
||||
padding=self.padding,
|
||||
normalize=self.normalize,
|
||||
range=self.norm_range,
|
||||
scale_each=self.scale_each,
|
||||
pad_value=self.pad_value,
|
||||
)
|
||||
|
||||
@rank_zero_only
|
||||
def on_epoch_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule) -> None:
|
||||
if not _TORCHVISION_AVAILABLE:
|
||||
return
|
||||
|
||||
images, _ = next(iter(DataLoader(trainer.datamodule.mnist_val, batch_size=self.num_samples)))
|
||||
images_flattened = images.view(images.size(0), -1)
|
||||
|
||||
# generate images
|
||||
with torch.no_grad():
|
||||
pl_module.eval()
|
||||
images_generated = pl_module(images_flattened.to(pl_module.device))
|
||||
pl_module.train()
|
||||
|
||||
if trainer.current_epoch == 0:
|
||||
save_image(self._to_grid(images), f"grid_ori_{trainer.current_epoch}.png")
|
||||
save_image(self._to_grid(images_generated.reshape(images.shape)), f"grid_generated_{trainer.current_epoch}.png")
|
||||
|
||||
|
||||
class LitAutoEncoder(pl.LightningModule):
|
||||
|
@ -46,44 +118,37 @@ class LitAutoEncoder(pl.LightningModule):
|
|||
self.decoder = nn.Sequential(nn.Linear(3, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, 28 * 28))
|
||||
|
||||
def forward(self, x):
|
||||
# in lightning, forward defines the prediction/inference actions
|
||||
embedding = self.encoder(x)
|
||||
return embedding
|
||||
z = self.encoder(x)
|
||||
x_hat = self.decoder(z)
|
||||
return x_hat
|
||||
|
||||
def training_step(self, batch, batch_idx):
|
||||
x, y = batch
|
||||
x = x.view(x.size(0), -1)
|
||||
z = self.encoder(x)
|
||||
x_hat = self.decoder(z)
|
||||
loss = F.mse_loss(x_hat, x)
|
||||
return loss
|
||||
return self._common_step(batch, batch_idx, "train")
|
||||
|
||||
def validation_step(self, batch, batch_idx):
|
||||
x, y = batch
|
||||
x = x.view(x.size(0), -1)
|
||||
z = self.encoder(x)
|
||||
x_hat = self.decoder(z)
|
||||
loss = F.mse_loss(x_hat, x)
|
||||
self.log("valid_loss", loss, on_step=True)
|
||||
self._common_step(batch, batch_idx, "val")
|
||||
|
||||
def test_step(self, batch, batch_idx):
|
||||
x, y = batch
|
||||
x = x.view(x.size(0), -1)
|
||||
z = self.encoder(x)
|
||||
x_hat = self.decoder(z)
|
||||
loss = F.mse_loss(x_hat, x)
|
||||
self.log("test_loss", loss, on_step=True)
|
||||
self._common_step(batch, batch_idx, "test")
|
||||
|
||||
def predict_step(self, batch, batch_idx, dataloader_idx=None):
|
||||
x, y = batch
|
||||
x = x.view(x.size(0), -1)
|
||||
z = self.encoder(x)
|
||||
return self.decoder(z)
|
||||
x = self._prepare_batch(batch)
|
||||
return self(x)
|
||||
|
||||
def configure_optimizers(self):
|
||||
optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)
|
||||
return optimizer
|
||||
|
||||
def _prepare_batch(self, batch):
|
||||
x, _ = batch
|
||||
return x.view(x.size(0), -1)
|
||||
|
||||
def _common_step(self, batch, batch_idx, stage: str):
|
||||
x = self._prepare_batch(batch)
|
||||
loss = F.mse_loss(x, self(x))
|
||||
self.log(f"{stage}_loss", loss, on_step=True)
|
||||
return loss
|
||||
|
||||
|
||||
class MyDataModule(pl.LightningDataModule):
|
||||
def __init__(self, batch_size: int = 32):
|
||||
|
@ -108,7 +173,12 @@ class MyDataModule(pl.LightningDataModule):
|
|||
|
||||
def cli_main():
|
||||
cli = LightningCLI(
|
||||
LitAutoEncoder, MyDataModule, seed_everything_default=1234, save_config_overwrite=True, run=False
|
||||
LitAutoEncoder,
|
||||
MyDataModule,
|
||||
seed_everything_default=1234,
|
||||
save_config_overwrite=True,
|
||||
run=False, # used to de-activate automatic fitting.
|
||||
trainer_defaults={"callbacks": ImageSampler(), "max_epochs": 10},
|
||||
)
|
||||
cli.trainer.fit(cli.model, datamodule=cli.datamodule)
|
||||
cli.trainer.test(ckpt_path="best")
|
||||
|
|
Loading…
Reference in New Issue