Disable tuner with distributed strategies (#12179)
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
This commit is contained in:
parent
d0d41737ab
commit
fc499bf56f
|
@ -333,8 +333,12 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
|
|||
- Removed `is_global_zero` check in `training_epoch_loop` before `logger.save`. If you have a custom logger that implements `save` the Trainer will now call `save` on all ranks by default. To change this behavior add `@rank_zero_only` to your `save` implementation ([#12134](https://github.com/PyTorchLightning/pytorch-lightning/pull/12134))
|
||||
|
||||
|
||||
- Disabled tuner with distributed strategies ([#12179](https://github.com/PyTorchLightning/pytorch-lightning/pull/12179))
|
||||
|
||||
|
||||
- Marked `trainer.logger_connector` as protected ([#12195](https://github.com/PyTorchLightning/pytorch-lightning/pull/12195))
|
||||
|
||||
|
||||
### Deprecated
|
||||
|
||||
- Deprecated `training_type_plugin` property in favor of `strategy` in `Trainer` and updated the references ([#11141](https://github.com/PyTorchLightning/pytorch-lightning/pull/11141))
|
||||
|
|
|
@ -17,6 +17,7 @@ import pytorch_lightning as pl
|
|||
from pytorch_lightning.trainer.states import TrainerStatus
|
||||
from pytorch_lightning.tuner.batch_size_scaling import scale_batch_size
|
||||
from pytorch_lightning.tuner.lr_finder import _LRFinder, lr_find
|
||||
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
||||
from pytorch_lightning.utilities.types import EVAL_DATALOADERS, TRAIN_DATALOADERS
|
||||
|
||||
|
||||
|
@ -43,6 +44,13 @@ class Tuner:
|
|||
|
||||
self.trainer.strategy.connect(model)
|
||||
|
||||
is_tuning = self.trainer.auto_scale_batch_size or self.trainer.auto_lr_find
|
||||
if self.trainer._accelerator_connector.is_distributed and is_tuning:
|
||||
raise MisconfigurationException(
|
||||
"`trainer.tune()` is currently not supported with"
|
||||
f" `Trainer(strategy={self.trainer.strategy.strategy_name!r})`."
|
||||
)
|
||||
|
||||
# Run auto batch size scaling
|
||||
if self.trainer.auto_scale_batch_size:
|
||||
if isinstance(self.trainer.auto_scale_batch_size, str):
|
||||
|
|
|
@ -0,0 +1,27 @@
|
|||
# Copyright The PyTorch Lightning team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import pytest
|
||||
|
||||
from pytorch_lightning import Trainer
|
||||
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
||||
from tests.helpers.boring_model import BoringModel
|
||||
|
||||
|
||||
def test_tuner_with_distributed_strategies():
|
||||
"""Test that an error is raised when tuner is used with multi-device strategy."""
|
||||
trainer = Trainer(auto_scale_batch_size=True, devices=2, strategy="ddp", accelerator="cpu")
|
||||
model = BoringModel()
|
||||
|
||||
with pytest.raises(MisconfigurationException, match=r"not supported with `Trainer\(strategy='ddp'\)`"):
|
||||
trainer.tune(model)
|
Loading…
Reference in New Issue