Update README.md (#19968)
This commit is contained in:
parent
06ea3a0571
commit
fa5da26e39
90
README.md
90
README.md
|
@ -12,10 +12,10 @@
|
|||
______________________________________________________________________
|
||||
|
||||
<p align="center">
|
||||
<a href="https://lightning.ai/">Lightning.ai</a> •
|
||||
<a href="https://lightning.ai/">Lightning AI</a> •
|
||||
<a href="#examples">Examples</a> •
|
||||
<a href="https://lightning.ai/docs/pytorch/stable/">PyTorch Lightning</a> •
|
||||
<a href="https://lightning.ai/docs/fabric/stable/">Fabric</a> •
|
||||
<a href="https://lightning.ai/docs/app/stable/">Lightning Apps</a> •
|
||||
<a href="https://pytorch-lightning.readthedocs.io/en/stable/">Docs</a> •
|
||||
<a href="#community">Community</a> •
|
||||
<a href="https://lightning.ai/docs/pytorch/stable/generated/CONTRIBUTING.html">Contribute</a> •
|
||||
|
@ -92,15 +92,11 @@ pip install -iU https://test.pypi.org/simple/ pytorch-lightning
|
|||
|
||||
______________________________________________________________________
|
||||
|
||||
## Lightning has 4 core packages
|
||||
## Lightning has 2 core packages
|
||||
|
||||
[PyTorch Lightning: Train and deploy PyTorch at scale](#pytorch-lightning-train-and-deploy-pytorch-at-scale).
|
||||
<br/>
|
||||
[Lightning Fabric: Expert control](#lightning-fabric-expert-control).
|
||||
<br/>
|
||||
[Lightning Data: Blazing fast, distributed streaming of training data from cloud storage](https://github.com/Lightning-AI/pytorch-lightning/tree/master/src/lightning/data).
|
||||
<br/>
|
||||
[Lightning Apps: Build AI products and ML workflows](#lightning-apps-build-ai-products-and-ml-workflows).
|
||||
|
||||
Lightning gives you granular control over how much abstraction you want to add over PyTorch.
|
||||
|
||||
|
@ -108,7 +104,9 @@ Lightning gives you granular control over how much abstraction you want to add o
|
|||
<img src="https://pl-public-data.s3.amazonaws.com/assets_lightning/continuum.png" width="80%">
|
||||
</div>
|
||||
|
||||
______________________________________________________________________
|
||||
|
||||
|
||||
|
||||
|
||||
# PyTorch Lightning: Train and Deploy PyTorch at Scale
|
||||
|
||||
|
@ -118,6 +116,15 @@ PyTorch Lightning is just organized PyTorch - Lightning disentangles PyTorch cod
|
|||
|
||||
______________________________________________________________________
|
||||
|
||||
### Examples
|
||||
Explore various types of training possible with PyTorch Lightning. Pretrain and finetune ANY kind of model to perform ANY task like classification, segmentation, summarization and more:
|
||||
|
||||
| Task | Description | Run |
|
||||
|---|---|---|
|
||||
| [Hello world](#hello-simple-model) | Pretrain - Hello world example | <a target="_blank" href="https://lightning.ai/lightning-ai/studios/pytorch-lightning-hello-world"><img src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/app-2/studio-badge.svg" alt="Open In Studio"/></a> |
|
||||
| [Image segmentation](https://lightning.ai/lightning-ai/studios/image-segmentation-with-pytorch-lightning) | Finetune - ResNet-50 model to segment images | <a target="_blank" href="https://lightning.ai/lightning-ai/studios/image-segmentation-with-pytorch-lightning"><img src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/app-2/studio-badge.svg" alt="Open In Studio"/></a> |
|
||||
| [Text classification](https://lightning.ai/lightning-ai/studios/text-classification-with-pytorch-lightning) | Finetune - text classifier (BERT model) | <a target="_blank" href="https://lightning.ai/lightning-ai/studios/text-classification-with-pytorch-lightning"><img src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/app-2/studio-badge.svg" alt="Open In Studio"/></a> |
|
||||
|
||||
### Hello simple model
|
||||
|
||||
```python
|
||||
|
@ -319,6 +326,9 @@ ______________________________________________________________________
|
|||
|
||||
______________________________________________________________________
|
||||
|
||||
|
||||
|
||||
|
||||
# Lightning Fabric: Expert control.
|
||||
|
||||
Run on any device at any scale with expert-level control over PyTorch training loop and scaling strategy. You can even write your own Trainer.
|
||||
|
@ -501,62 +511,8 @@ ______________________________________________________________________
|
|||
|
||||
______________________________________________________________________
|
||||
|
||||
# Lightning Apps: Build AI products and ML workflows
|
||||
|
||||
Lightning Apps remove the cloud infrastructure boilerplate so you can focus on solving the research or business problems. Lightning Apps can run on the Lightning Cloud, your own cluster or a private cloud.
|
||||
|
||||
<div align="center">
|
||||
<img src="https://pl-public-data.s3.amazonaws.com/assets_lightning/lightning-apps-teaser.png" width="80%">
|
||||
</div>
|
||||
|
||||
## Hello Lightning app world
|
||||
|
||||
```python
|
||||
# app.py
|
||||
import lightning as L
|
||||
|
||||
|
||||
class TrainComponent(L.LightningWork):
|
||||
def run(self, x):
|
||||
print(f"train a model on {x}")
|
||||
|
||||
|
||||
class AnalyzeComponent(L.LightningWork):
|
||||
def run(self, x):
|
||||
print(f"analyze model on {x}")
|
||||
|
||||
|
||||
class WorkflowOrchestrator(L.LightningFlow):
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
self.train = TrainComponent(cloud_compute=L.CloudCompute("cpu"))
|
||||
self.analyze = AnalyzeComponent(cloud_compute=L.CloudCompute("gpu"))
|
||||
|
||||
def run(self):
|
||||
self.train.run("CPU machine 1")
|
||||
self.analyze.run("GPU machine 2")
|
||||
|
||||
|
||||
app = L.LightningApp(WorkflowOrchestrator())
|
||||
```
|
||||
|
||||
Run on the cloud or locally
|
||||
|
||||
```bash
|
||||
# run on the cloud
|
||||
lightning run app app.py --setup --cloud
|
||||
|
||||
# run locally
|
||||
lightning run app app.py
|
||||
```
|
||||
|
||||
______________________________________________________________________
|
||||
|
||||
<div align="center">
|
||||
<a href="https://lightning.ai/docs/app/stable/">Read the Lightning Apps docs</a>
|
||||
</div>
|
||||
|
||||
______________________________________________________________________
|
||||
|
||||
|
||||
|
||||
## Examples
|
||||
|
||||
|
@ -587,7 +543,8 @@ ______________________________________________________________________
|
|||
- [Logistic Regression](https://lightning-bolts.readthedocs.io/en/stable/models/classic_ml.html#logistic-regression)
|
||||
- [Linear Regression](https://lightning-bolts.readthedocs.io/en/stable/models/classic_ml.html#linear-regression)
|
||||
|
||||
______________________________________________________________________
|
||||
|
||||
|
||||
|
||||
## Continuous Integration
|
||||
|
||||
|
@ -611,7 +568,8 @@ Lightning is rigorously tested across multiple CPUs, GPUs and TPUs and against m
|
|||
</center>
|
||||
</details>
|
||||
|
||||
______________________________________________________________________
|
||||
|
||||
|
||||
|
||||
## Community
|
||||
|
||||
|
|
Loading…
Reference in New Issue