Avoid in-place ops during logging result updates (#11401)

Co-authored-by: rohitgr7 <rohitgr1998@gmail.com>
This commit is contained in:
Carlos Mocholí 2022-01-12 09:09:36 +01:00 committed by GitHub
parent 221091afc4
commit f5bbc2cf17
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 28 additions and 5 deletions

View File

@ -414,6 +414,9 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
- Fixed wrong typehint for `Trainer.lightning_optimizers` ([#11155](https://github.com/PyTorchLightning/pytorch-lightning/pull/11155))
- Fixed type promotion when tensors of higher category than float are logged ([#11401](https://github.com/PyTorchLightning/pytorch-lightning/pull/11401))
- Fixed the lr-scheduler state not being dumped to checkpoint when using the deepspeed strategy ([#11307](https://github.com/PyTorchLightning/pytorch-lightning/pull/11307))

View File

@ -216,6 +216,7 @@ class _ResultMetric(Metric, DeviceDtypeModuleMixin):
# do not set a dtype in case the default dtype was changed
self.add_state("value", torch.tensor(default), dist_reduce_fx=torch.sum)
if self.meta.is_mean_reduction:
self.cumulated_batch_size: torch.Tensor
self.add_state("cumulated_batch_size", torch.tensor(0), dist_reduce_fx=torch.sum)
# this is defined here only because upstream is missing the type annotation
self._forward_cache: Optional[Any] = None
@ -241,14 +242,13 @@ class _ResultMetric(Metric, DeviceDtypeModuleMixin):
# perform accumulation with reduction
if self.meta.is_mean_reduction:
self.value += value.mean() * batch_size
# `Metric.add_state` does not work well with mypy, mypy doesn't know this is a `Tensor`
# we could add an assertion, but this is a hot code path
self.cumulated_batch_size += batch_size # type: ignore[operator]
# do not use `+=` as it doesn't do type promotion
self.value = self.value + value.mean() * batch_size
self.cumulated_batch_size = self.cumulated_batch_size + batch_size
elif self.meta.is_max_reduction or self.meta.is_min_reduction:
self.value = self.meta.reduce_fx(self.value, value.mean())
elif self.meta.is_sum_reduction:
self.value += value.mean()
self.value = self.value + value.mean()
else:
value = cast(Metric, value)
self.value = value

View File

@ -590,6 +590,26 @@ def test_metric_result_respects_dtype(floating_dtype):
torch.set_default_dtype(torch.float)
@pytest.mark.parametrize("reduce_fx", ("mean", sum))
def test_metric_result_dtype_promotion(reduce_fx):
metadata = _Metadata("foo", "bar", reduce_fx=reduce_fx)
metadata.sync = _Sync()
rm = _ResultMetric(metadata, is_tensor=True)
assert rm.value.dtype == torch.float
# log a double
rm.update(torch.tensor(0, dtype=torch.double), 1)
# `rm.value.dtype` is promoted
assert rm.value.dtype == torch.double
# log a float
rm.update(torch.tensor(0, dtype=torch.float), 1)
# the previous dtype stays
assert rm.value.dtype == torch.double
total = rm.compute()
assert total.dtype == torch.double
@pytest.mark.parametrize(["reduce_fx", "expected"], [(max, -2), (min, 2)])
def test_result_metric_max_min(reduce_fx, expected):
metadata = _Metadata("foo", "bar", reduce_fx=reduce_fx)