diff --git a/README.md b/README.md index 363e1dbf8b..c52a1a75a5 100644 --- a/README.md +++ b/README.md @@ -32,27 +32,9 @@ Keras is too abstract for researchers. Lightning abstracts the full training loo ## Why do I want to use lightning? Because you want to use best practices and get gpu training, multi-node training, checkpointing, mixed-precision, etc... for free. -To use lightning do 2 things: -1. Define a model with the lightning interface. -2. Feed this model to the lightning trainer. - -*Example model definition* -```python -from pytorch_lightning import Trainer -from pytorch_lightning.utils.pt_callbacks import EarlyStopping, ModelCheckpoint - -# 1 - look at the this page for the interface (https://williamfalcon.github.io/pytorch-lightning/) -model = MyModel() - -# 2 - feed to trainer -trainer = Trainer( - checkpoint_callback=ModelCheckpoint(...), - early_stop_callback=EarlyStopping(...), - gpus=[0,1] -) - -trainer.fit(model) -``` +To use lightning do 2 things: +1. [Define a trainer](https://github.com/williamFalcon/pytorch-lightning/blob/master/docs/source/examples/basic_trainer.py) (which will run ALL your models). +2. [Define a model](https://github.com/williamFalcon/pytorch-lightning/blob/master/docs/source/examples/example_model.py). ## What are some key lightning features? @@ -91,25 +73,6 @@ Trainer(use_amp=True, amp_level='O2') Trainer(gpus=[0, 1, 2, 3]) ``` -- Run grid-search on cluster -```python -from test_tube import Experiment, SlurmCluster, HyperOptArgumentParser - -def training_fx(hparams, cluster, _): - # hparams are local params - model = MyModel() - trainer = Trainer(...) - trainer.fit(model) - -# grid search number of layers -parser = HyperOptArgumentParser(strategy='grid_search') -parser.opt_list('--layers', default=5, type=int, options=[1, 5, 10, 20, 50]) -hyperparams = parser.parse_args() - -cluster = SlurmCluster(hyperparam_optimizer=hyperparams) -cluster.optimize_parallel_cluster_gpu(training_fx) -``` - - Automatic checkpointing ```python # do 3 things: @@ -134,18 +97,25 @@ exp = Experiment(...) Trainer(experiment=exp) ``` - -10. Log training details (through test-tube). -11. Run training on multiple GPUs (through test-tube). -12. Run training on a GPU cluster managed by SLURM (through test-tube). -13. Distribute memory-bound models on multiple GPUs. -14. Give your model hyperparameters parsed from the command line OR a JSON file. -15. Run your model in a dev environment where nothing logs. +- Run grid-search on cluster +```python +from test_tube import Experiment, SlurmCluster, HyperOptArgumentParser + +def training_fx(hparams, cluster, _): + # hparams are local params + model = MyModel() + trainer = Trainer(...) + trainer.fit(model) + +# grid search number of layers +parser = HyperOptArgumentParser(strategy='grid_search') +parser.opt_list('--layers', default=5, type=int, options=[1, 5, 10, 20, 50]) +hyperparams = parser.parse_args() + +cluster = SlurmCluster(hyperparam_optimizer=hyperparams) +cluster.optimize_parallel_cluster_gpu(training_fx) +``` -## Usage -To use lightning do 2 things: -1. [Define a trainer](https://github.com/williamFalcon/pytorch-lightning/blob/master/docs/source/examples/basic_trainer.py) (which will run ALL your models). -2. [Define a model](https://github.com/williamFalcon/pytorch-lightning/blob/master/docs/source/examples/example_model.py). #### Quick demo Run the following demo to see how it works: