diff --git a/pytorch_lightning/trainer/trainer.py b/pytorch_lightning/trainer/trainer.py index f79cdb1a21..63bf187c67 100644 --- a/pytorch_lightning/trainer/trainer.py +++ b/pytorch_lightning/trainer/trainer.py @@ -639,7 +639,8 @@ class Trainer(TrainerIO): # call warnings from proc zero only which triggers dataloaders # if those have to download data it will only happen on proc 0 if self.proc_rank == 0: - if self.use_ddp or self.use_ddp2 and not isinstance(self.get_train_dataloader().sampler, DistributedSampler): + on_ddp = self.use_ddp or self.use_ddp2 + if on_ddp and not isinstance(self.get_train_dataloader().sampler, DistributedSampler): msg = """ You're using multiple gpus and multiple nodes without using a DistributedSampler to assign a subset of your data to each process. To silence this warning, pass a @@ -658,14 +659,14 @@ class Trainer(TrainerIO): """ warnings.warn(msg) - if self.use_ddp or self.use_ddp2 and self.get_val_dataloaders is not None: + if on_ddp and self.get_val_dataloaders is not None: for dataloader in self.get_val_dataloaders(): if not isinstance(dataloader.sampler, DistributedSampler): msg = """ Your val_dataloader(s) don't use DistributedSampler. - You're using multiple gpus and multiple nodes without using a DistributedSampler - to assign a subset of your data to each process. To silence this warning, pass a - DistributedSampler to your DataLoader. + You're using multiple gpus and multiple nodes without using a + DistributedSampler to assign a subset of your data to each process. + To silence this warning, pass a DistributedSampler to your DataLoader. ie: this: dataset = myDataset() @@ -681,14 +682,14 @@ class Trainer(TrainerIO): warnings.warn(msg) break - if self.use_ddp or self.use_ddp2 and self.get_test_dataloaders is not None: + if on_ddp and self.get_test_dataloaders is not None: for dataloader in self.get_test_dataloaders(): if not isinstance(dataloader.sampler, DistributedSampler): msg = """ Your test_dataloader(s) don't use DistributedSampler. - You're using multiple gpus and multiple nodes without using a DistributedSampler - to assign a subset of your data to each process. To silence this warning, pass a - DistributedSampler to your DataLoader. + You're using multiple gpus and multiple nodes without using a + DistributedSampler to assign a subset of your data to each process. + To silence this warning, pass a DistributedSampler to your DataLoader. ie: this: dataset = myDataset()