ref: clean up ddp before final fix (#3817)

* ref: clean up ddp before final fix

* ref: clean up ddp before final fix

* ref: clean up ddp before final fix

* ref: clean up ddp before final fix

* ref: clean up ddp before final fix
This commit is contained in:
William Falcon 2020-10-03 12:01:02 -04:00 committed by GitHub
parent 0838c6bfce
commit ed1450a293
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 10 additions and 23 deletions

View File

@ -154,7 +154,7 @@ class AcceleratorConnector:
accelerator_backend = accelerators.DDPCPUSpawnBackend(self.trainer, nprocs=self.trainer.num_processes)
elif self.trainer.distributed_backend == "ddp":
accelerator_backend = accelerators.DDPBackend(self.trainer, mode='ddp')
accelerator_backend = accelerators.DDPBackend(self.trainer)
elif self.trainer.use_dp:
accelerator_backend = accelerators.DataParallelBackend(self.trainer)

View File

@ -43,30 +43,21 @@ else:
class DDPBackend(Accelerator):
def __init__(self, trainer, mode: str = 'ddp'):
def __init__(self, trainer):
super().__init__(trainer)
self.task_idx = None
self._has_spawned_children = False
self.mode = mode
self.dist = LightningDistributed()
def setup(self, model):
if self.mode == 'ddp':
self.__ddp_script_mode_setup()
elif self.mode == 'slurm_ddp':
self.__slurm_setup()
elif self.mode == 'torchelastic_ddp':
self.__torchelastic_setup()
# first track model
self.trainer.model = model
def __slurm_setup(self):
self.task_idx = int(os.environ['SLURM_LOCALID'])
# start the other scripts
self._call_children_scripts()
def __torchelastic_setup(self):
self.task_idx = int(os.environ['LOCAL_RANK'])
def _call_children_scripts(self):
def __ddp_script_mode_setup(self):
assert self.trainer.global_rank == 0
self._check_can_spawn_children()
self._has_spawned_children = True
@ -137,12 +128,9 @@ class DDPBackend(Accelerator):
def train(self):
model = self.trainer.model
if self.mode == 'ddp':
results = self.ddp_train(process_idx=self.task_idx, model=model, is_master=True)
del os.environ['WORLD_SIZE']
return results
else:
self.ddp_train(process_idx=self.task_idx, model=model)
results = self.ddp_train(process_idx=self.task_idx, model=model, is_master=True)
del os.environ['WORLD_SIZE']
return results
def _check_can_spawn_children(self):
if self._has_spawned_children:
@ -288,5 +276,4 @@ class DDPBackend(Accelerator):
# clean up memory
torch.cuda.empty_cache()
if self.trainer.global_rank == 0:
return results
return results