updated doc indexes
This commit is contained in:
parent
cdb4de3606
commit
e89975d19e
|
@ -29,21 +29,24 @@ Otherwise, to Define a Lightning Module, implement the following methods:
|
|||
---
|
||||
**Minimal example**
|
||||
```python
|
||||
import pytorch_lightning as ptl
|
||||
import os
|
||||
import torch
|
||||
from torch.nn import functional as F
|
||||
from torch.utils.data import DataLoader
|
||||
from torchvision.datasets import MNIST
|
||||
import torchvision.transforms as transforms
|
||||
|
||||
import pytorch_lightning as ptl
|
||||
|
||||
class CoolModel(ptl.LightningModule):
|
||||
|
||||
def __init(self):
|
||||
def __init__(self):
|
||||
super(CoolModel, self).__init__()
|
||||
# not the best model...
|
||||
self.l1 = torch.nn.Linear(28 * 28, 10)
|
||||
|
||||
def forward(self, x):
|
||||
return torch.relu(self.l1(x))
|
||||
return torch.relu(self.l1(x.view(x.size(0), -1)))
|
||||
|
||||
def my_loss(self, y_hat, y):
|
||||
return F.cross_entropy(y_hat, y)
|
||||
|
@ -51,7 +54,7 @@ class CoolModel(ptl.LightningModule):
|
|||
def training_step(self, batch, batch_nb):
|
||||
x, y = batch
|
||||
y_hat = self.forward(x)
|
||||
return {'tng_loss': self.my_loss(y_hat, y)}
|
||||
return {'loss': self.my_loss(y_hat, y)}
|
||||
|
||||
def validation_step(self, batch, batch_nb):
|
||||
x, y = batch
|
||||
|
@ -59,23 +62,23 @@ class CoolModel(ptl.LightningModule):
|
|||
return {'val_loss': self.my_loss(y_hat, y)}
|
||||
|
||||
def validation_end(self, outputs):
|
||||
avg_loss = torch.stack([x for x in outputs['val_loss']]).mean()
|
||||
return avg_loss
|
||||
avg_loss = torch.stack([x['val_loss'] for x in outputs]).mean()
|
||||
return {'avg_val_loss': avg_loss}
|
||||
|
||||
def configure_optimizers(self):
|
||||
return [torch.optim.Adam(self.parameters(), lr=0.02)]
|
||||
|
||||
@ptl.data_loader
|
||||
def tng_dataloader(self):
|
||||
return DataLoader(MNIST('path/to/save', train=True), batch_size=32)
|
||||
return DataLoader(MNIST(os.getcwd(), train=True, download=True, transform=transforms.ToTensor()), batch_size=32)
|
||||
|
||||
@ptl.data_loader
|
||||
def val_dataloader(self):
|
||||
return DataLoader(MNIST('path/to/save', train=False), batch_size=32)
|
||||
return DataLoader(MNIST(os.getcwd(), train=True, download=True, transform=transforms.ToTensor()), batch_size=32)
|
||||
|
||||
@ptl.data_loader
|
||||
def test_dataloader(self):
|
||||
return DataLoader(MNIST('path/to/save', train=False), batch_size=32)
|
||||
return DataLoader(MNIST(os.getcwd(), train=True, download=True, transform=transforms.ToTensor()), batch_size=32)
|
||||
```
|
||||
|
||||
---
|
||||
|
|
Loading…
Reference in New Issue