Bugfix/18394 batch size finder max val batches (#18854)

Co-authored-by: Oleksandra Sokol <o.sokol@samsung.com>
Co-authored-by: Jirka Borovec <6035284+Borda@users.noreply.github.com>
This commit is contained in:
BoringDonut 2023-10-25 22:03:42 +03:00 committed by GitHub
parent 874825857f
commit e50b68aae3
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 24 additions and 1 deletions

View File

@ -33,6 +33,9 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
- Fixed an issue when replacing an existing `last.ckpt` file with a symlink ([#18793](https://github.com/Lightning-AI/lightning/pull/18793))
- Fixed an issue when `BatchSizeFinder` `steps_per_trial` parameter ends up defining how many validation batches to run during the entire training ([#18394](https://github.com/Lightning-AI/lightning/issues/18394))
## [2.1.0] - 2023-10-11

View File

@ -323,6 +323,9 @@ def _reset_dataloaders(trainer: "pl.Trainer") -> None:
assert loop is not None
loop._combined_loader = None # force a reload
loop.setup_data()
if isinstance(loop, pl.loops._FitLoop):
loop.epoch_loop.val_loop._combined_loader = None
loop.epoch_loop.val_loop.setup_data()
def _try_loop_run(trainer: "pl.Trainer", params: Dict[str, Any]) -> None:

View File

@ -317,7 +317,7 @@ def test_dataloader_reset_with_scale_batch_size(tmp_path, caplog, scale_method,
assert caplog.text.count("greater or equal than the length") == int(new_batch_size == dataset_len)
assert trainer.train_dataloader.batch_size == new_batch_size
assert trainer.val_dataloaders.batch_size == init_batch_size
assert trainer.val_dataloaders.batch_size == new_batch_size
@pytest.mark.parametrize("trainer_fn", ["validate", "test", "predict"])
@ -469,3 +469,20 @@ def test_dataloader_batch_size_updated_on_failure(_, tmpdir, scale_method, expec
assert new_batch_size == model.batch_size
assert new_batch_size == expected_batch_size
assert trainer.train_dataloader.batch_size == expected_batch_size
def test_batch_size_finder_callback_val_batches(tmpdir):
"""Test that `BatchSizeFinder` does not limit the number of val batches during training."""
steps_per_trial = 2
model = BatchSizeModel(batch_size=16)
trainer = Trainer(
default_root_dir=tmpdir,
num_sanity_val_steps=0,
max_epochs=1,
enable_model_summary=False,
callbacks=[BatchSizeFinder(steps_per_trial=steps_per_trial, max_trials=1)],
)
trainer.fit(model)
assert trainer.num_val_batches[0] == len(trainer.val_dataloaders)
assert trainer.num_val_batches[0] != steps_per_trial