diff --git a/pytorch_lightning/core/lightning.py b/pytorch_lightning/core/lightning.py index 5e8407f79a..233638361a 100644 --- a/pytorch_lightning/core/lightning.py +++ b/pytorch_lightning/core/lightning.py @@ -620,14 +620,14 @@ class LightningModule( for val_batch in val_data: out = validation_step(val_batch) val_outs.append(out) - validation_epoch_end(val_outs) + validation_epoch_end(val_outs) Args: batch (:class:`~torch.Tensor` | (:class:`~torch.Tensor`, ...) | [:class:`~torch.Tensor`, ...]): The output of your :class:`~torch.utils.data.DataLoader`. A tensor, tuple or list. batch_idx (int): The index of this batch dataloader_idx (int): The index of the dataloader that produced this batch - (only if multiple val datasets used) + (only if multiple val dataloaders used) Return: Any of. @@ -675,11 +675,11 @@ class LightningModule( # log the outputs! self.log_dict({'val_loss': loss, 'val_acc': val_acc}) - If you pass in multiple val datasets, validation_step will have an additional argument. + If you pass in multiple val dataloaders, :meth:`validation_step` will have an additional argument. .. code-block:: python - # CASE 2: multiple validation datasets + # CASE 2: multiple validation dataloaders def validation_step(self, batch, batch_idx, dataloader_idx): # dataloader_idx tells you which dataset this is. @@ -811,7 +811,7 @@ class LightningModule( The output of your :class:`~torch.utils.data.DataLoader`. A tensor, tuple or list. batch_idx (int): The index of this batch. dataloader_idx (int): The index of the dataloader that produced this batch - (only if multiple test datasets used). + (only if multiple test dataloaders used). Return: Any of. @@ -850,17 +850,16 @@ class LightningModule( # log the outputs! self.log_dict({'test_loss': loss, 'test_acc': test_acc}) - If you pass in multiple validation datasets, :meth:`test_step` will have an additional - argument. + If you pass in multiple test dataloaders, :meth:`test_step` will have an additional argument. .. code-block:: python - # CASE 2: multiple test datasets + # CASE 2: multiple test dataloaders def test_step(self, batch, batch_idx, dataloader_idx): # dataloader_idx tells you which dataset this is. Note: - If you don't need to validate you don't need to implement this method. + If you don't need to test you don't need to implement this method. Note: When the :meth:`test_step` is called, the model has been put in eval mode and