diff --git a/docs/source/sequences.rst b/docs/source/sequences.rst index 5e52dbf4ae..63da7e7147 100644 --- a/docs/source/sequences.rst +++ b/docs/source/sequences.rst @@ -49,10 +49,10 @@ Iterable Datasets Lightning supports using IterableDatasets as well as map-style Datasets. IterableDatasets provide a more natural option when using sequential data. -.. note:: When using an IterableDataset you must set the val_check_interval to an int (specifying the number of training - batches to run before validation) when initializing the Trainer even when there is no validation logic in place. +.. note:: When using an IterableDataset you must set the val_check_interval to 1.0 (the default) or to an int + (specifying the number of training batches to run before validation) when initializing the Trainer. This is due to the fact that the IterableDataset does not have a __len__ and Lightning requires this to calculate - the default validation interval. + the validation interval when val_check_interval is less than one. .. code-block:: python @@ -74,4 +74,4 @@ option when using sequential data. return dataloader # Set val_check_interval - trainer = pl.Trainer(val_check_interval=1000) + trainer = pl.Trainer()