add parity test for sync batchnorm (#12021)
This commit is contained in:
parent
7e2f9fbad5
commit
dc4c3171fc
|
@ -0,0 +1,112 @@
|
|||
# Copyright The PyTorch Lightning team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.utils.data import DataLoader, DistributedSampler
|
||||
|
||||
from pytorch_lightning import LightningModule, seed_everything, Trainer
|
||||
from tests.helpers.runif import RunIf
|
||||
|
||||
|
||||
class SyncBNModule(LightningModule):
|
||||
def __init__(self, batch_size):
|
||||
super().__init__()
|
||||
self.batch_size = batch_size
|
||||
self.bn_layer = nn.BatchNorm1d(1)
|
||||
self.linear = nn.Linear(1, 10)
|
||||
self.bn_outputs = []
|
||||
|
||||
def on_train_start(self) -> None:
|
||||
assert isinstance(self.bn_layer, torch.nn.modules.batchnorm.SyncBatchNorm)
|
||||
|
||||
def training_step(self, batch, batch_idx):
|
||||
with torch.no_grad():
|
||||
out_bn = self.bn_layer(batch)
|
||||
self.bn_outputs.append(out_bn.detach())
|
||||
out = self.linear(out_bn)
|
||||
return out.sum()
|
||||
|
||||
def configure_optimizers(self):
|
||||
return torch.optim.SGD(self.parameters(), lr=0.02)
|
||||
|
||||
def train_dataloader(self):
|
||||
dataset = torch.arange(64, dtype=torch.float).view(-1, 1)
|
||||
# we need to set a distributed sampler ourselves to force shuffle=False
|
||||
sampler = DistributedSampler(
|
||||
dataset, num_replicas=self.trainer.world_size, rank=self.trainer.global_rank, shuffle=False
|
||||
)
|
||||
return DataLoader(dataset, sampler=sampler, batch_size=self.batch_size)
|
||||
|
||||
|
||||
@RunIf(min_gpus=2, standalone=True)
|
||||
def test_sync_batchnorm_parity(tmpdir):
|
||||
"""Test parity between 1) Training a synced batch-norm layer on 2 GPUs with batch size B per device 2) Training
|
||||
a batch-norm layer on CPU with twice the batch size."""
|
||||
seed_everything(3)
|
||||
# 2 GPUS, batch size = 4 per GPU => total batch size = 8
|
||||
model = SyncBNModule(batch_size=4)
|
||||
trainer = Trainer(
|
||||
default_root_dir=tmpdir,
|
||||
accelerator="gpu",
|
||||
strategy="ddp",
|
||||
devices=2,
|
||||
max_steps=3,
|
||||
sync_batchnorm=True,
|
||||
num_sanity_val_steps=0,
|
||||
replace_sampler_ddp=False,
|
||||
deterministic=True,
|
||||
benchmark=False,
|
||||
)
|
||||
trainer.fit(model)
|
||||
|
||||
# the strategy is responsible for tearing down the batchnorm wrappers
|
||||
assert not isinstance(model.bn_layer, torch.nn.modules.batchnorm.SyncBatchNorm)
|
||||
assert isinstance(model.bn_layer, torch.nn.modules.batchnorm._BatchNorm)
|
||||
|
||||
bn_outputs = torch.stack(model.bn_outputs) # 2 x 4 x 1 on each GPU
|
||||
bn_outputs_multi_device = trainer.strategy.all_gather(bn_outputs).cpu() # 2 x 2 x 4 x 1
|
||||
|
||||
if trainer.global_rank == 0:
|
||||
# pretend we are now training on a single GPU/process
|
||||
# (we are reusing the rank 0 from the previous training)
|
||||
|
||||
# 1 GPU, batch size = 8 => total batch size = 8
|
||||
bn_outputs_single_device = _train_single_process_sync_batchnorm(batch_size=8, num_steps=3)
|
||||
|
||||
gpu0_outputs = bn_outputs_multi_device[0] # 2 x 4 x 1
|
||||
gpu1_outputs = bn_outputs_multi_device[1] # 2 x 4 x 1
|
||||
slice0 = bn_outputs_single_device[:, 0::2]
|
||||
slice1 = bn_outputs_single_device[:, 1::2]
|
||||
|
||||
assert torch.allclose(gpu0_outputs, slice0)
|
||||
assert torch.allclose(gpu1_outputs, slice1)
|
||||
|
||||
|
||||
def _train_single_process_sync_batchnorm(batch_size, num_steps):
|
||||
seed_everything(3)
|
||||
dataset = torch.arange(64, dtype=torch.float).view(-1, 1)
|
||||
train_dataloader = DataLoader(dataset, batch_size=batch_size)
|
||||
model = SyncBNModule(batch_size=batch_size)
|
||||
optimizer = model.configure_optimizers()
|
||||
model.train()
|
||||
for batch_idx, batch in enumerate(train_dataloader):
|
||||
optimizer.zero_grad()
|
||||
loss = model.training_step(batch, batch)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
if batch_idx == num_steps - 1:
|
||||
break
|
||||
|
||||
return torch.stack(model.bn_outputs) # num_steps x batch_size x 1
|
|
@ -1,131 +0,0 @@
|
|||
# Copyright The PyTorch Lightning team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import pytest
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from pytorch_lightning import LightningModule, seed_everything, Trainer
|
||||
from pytorch_lightning.plugins.environments import LightningEnvironment
|
||||
from pytorch_lightning.strategies import DDPSpawnStrategy
|
||||
from pytorch_lightning.utilities import FLOAT16_EPSILON
|
||||
from tests.helpers.datamodules import MNISTDataModule
|
||||
from tests.helpers.runif import RunIf
|
||||
from tests.helpers.utils import set_random_main_port
|
||||
|
||||
|
||||
class SyncBNModule(LightningModule):
|
||||
def __init__(self, gpu_count=1, **kwargs):
|
||||
super().__init__()
|
||||
|
||||
self.gpu_count = gpu_count
|
||||
self.bn_targets = None
|
||||
if "bn_targets" in kwargs:
|
||||
self.bn_targets = kwargs["bn_targets"]
|
||||
|
||||
self.linear = nn.Linear(28 * 28, 10)
|
||||
self.bn_layer = nn.BatchNorm1d(28 * 28)
|
||||
|
||||
def on_train_start(self) -> None:
|
||||
assert isinstance(self.bn_layer, torch.nn.modules.batchnorm.SyncBatchNorm)
|
||||
|
||||
def forward(self, x, batch_idx):
|
||||
with torch.no_grad():
|
||||
out_bn = self.bn_layer(x.view(x.size(0), -1))
|
||||
|
||||
if self.bn_targets:
|
||||
bn_target = self.bn_targets[batch_idx]
|
||||
|
||||
# executes on both GPUs
|
||||
bn_target = bn_target[self.trainer.local_rank :: self.gpu_count]
|
||||
bn_target = bn_target.to(out_bn.device)
|
||||
assert torch.sum(torch.abs(bn_target - out_bn)) < FLOAT16_EPSILON
|
||||
|
||||
out = self.linear(out_bn)
|
||||
|
||||
return out, out_bn
|
||||
|
||||
def training_step(self, batch, batch_idx):
|
||||
x, y = batch
|
||||
|
||||
y_hat, _ = self(x, batch_idx)
|
||||
loss = F.cross_entropy(y_hat, y)
|
||||
|
||||
return loss
|
||||
|
||||
def configure_optimizers(self):
|
||||
return torch.optim.Adam(self.linear.parameters(), lr=0.02)
|
||||
|
||||
|
||||
# TODO: Fatal Python error: Bus error
|
||||
@pytest.mark.skip(reason="Fatal Python error: Bus error")
|
||||
@RunIf(min_gpus=2, standalone=True)
|
||||
def test_sync_batchnorm_ddp(tmpdir):
|
||||
seed_everything(234)
|
||||
set_random_main_port()
|
||||
|
||||
# define datamodule and dataloader
|
||||
dm = MNISTDataModule()
|
||||
dm.prepare_data()
|
||||
dm.setup(stage=None)
|
||||
|
||||
train_dataloader = dm.train_dataloader()
|
||||
model = SyncBNModule()
|
||||
|
||||
bn_outputs = []
|
||||
|
||||
# shuffle is false by default
|
||||
for batch_idx, batch in enumerate(train_dataloader):
|
||||
x, _ = batch
|
||||
|
||||
_, out_bn = model.forward(x, batch_idx)
|
||||
bn_outputs.append(out_bn)
|
||||
|
||||
# get 3 steps
|
||||
if batch_idx == 2:
|
||||
break
|
||||
|
||||
bn_outputs = [x.cuda() for x in bn_outputs]
|
||||
|
||||
# reset datamodule
|
||||
# batch-size = 16 because 2 GPUs in DDP
|
||||
dm = MNISTDataModule(batch_size=16, dist_sampler=True)
|
||||
dm.prepare_data()
|
||||
dm.setup(stage=None)
|
||||
|
||||
model = SyncBNModule(gpu_count=2, bn_targets=bn_outputs)
|
||||
ddp = DDPSpawnStrategy(
|
||||
parallel_devices=[torch.device("cuda", 0), torch.device("cuda", 1)],
|
||||
num_nodes=1,
|
||||
sync_batchnorm=True,
|
||||
cluster_environment=LightningEnvironment(),
|
||||
find_unused_parameters=True,
|
||||
)
|
||||
|
||||
trainer = Trainer(
|
||||
default_root_dir=tmpdir,
|
||||
gpus=2,
|
||||
num_nodes=1,
|
||||
strategy=ddp,
|
||||
max_epochs=1,
|
||||
max_steps=3,
|
||||
sync_batchnorm=True,
|
||||
num_sanity_val_steps=0,
|
||||
replace_sampler_ddp=False,
|
||||
)
|
||||
|
||||
trainer.fit(model, dm)
|
||||
# the strategy is responsible for tearing down the batchnorm wrappers
|
||||
assert not isinstance(model.bn_layer, torch.nn.modules.batchnorm.SyncBatchNorm)
|
||||
assert isinstance(model.bn_layer, torch.nn.modules.batchnorm._BatchNorm)
|
Loading…
Reference in New Issue