diff --git a/CHANGELOG.md b/CHANGELOG.md index 0fa590d0e1..e6486a5de5 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -14,6 +14,7 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/). - Added support for `IterableDataset` in validation and testing ([#1104](https://github.com/PyTorchLightning/pytorch-lightning/pull/1104)) - Added support for non-primitive types in `hparams` for `TensorboardLogger` ([#1130](https://github.com/PyTorchLightning/pytorch-lightning/pull/1130)) - Added a check that stops the training when loss or weights contain `NaN` or `inf` values. ([#1097](https://github.com/PyTorchLightning/pytorch-lightning/pull/1097)) +- Updated references to self.forward() to instead use the `__call__` interface. ([#1211](https://github.com/PyTorchLightning/pytorch-lightning/pull/1211)) ### Changed diff --git a/README.md b/README.md index 314ca70d63..51173a0d23 100644 --- a/README.md +++ b/README.md @@ -200,7 +200,7 @@ def validation_step(self, batch, batch_idx): x, y = batch # or as basic as a CNN classification - out = self.forward(x) + out = self(x) loss = my_loss(out, y) return {'loss': loss} ``` diff --git a/docs/source/child_modules.rst b/docs/source/child_modules.rst index 6ea0c59951..49fe6f463c 100644 --- a/docs/source/child_modules.rst +++ b/docs/source/child_modules.rst @@ -24,7 +24,7 @@ that change in the `Autoencoder` model are the init, forward, training, validati x, _ = batch representation = self.encoder(x) - x_hat = self.forward(representation) + x_hat = self(representation) loss = MSE(x, x_hat) return loss @@ -38,7 +38,7 @@ that change in the `Autoencoder` model are the init, forward, training, validati def _shared_eval(self, batch, batch_idx, prefix): x, y = batch representation = self.encoder(x) - x_hat = self.forward(representation) + x_hat = self(representation) loss = F.nll_loss(logits, y) return {f'{prefix}_loss': loss} diff --git a/docs/source/introduction_guide.rst b/docs/source/introduction_guide.rst index c045383951..6defcaa026 100644 --- a/docs/source/introduction_guide.rst +++ b/docs/source/introduction_guide.rst @@ -319,7 +319,7 @@ in the LightningModule def training_step(self, batch, batch_idx): x, y = batch - logits = self.forward(x) + logits = self(x) loss = F.nll_loss(logits, y) return {'loss': loss} # return loss (also works) @@ -371,7 +371,7 @@ For clarity, we'll recall that the full LightningModule now looks like this. def training_step(self, batch, batch_idx): x, y = batch - logits = self.forward(x) + logits = self(x) loss = F.nll_loss(logits, y) # add logging @@ -684,7 +684,7 @@ sample split in the `train_dataloader` method. class LitMNIST(pl.LightningModule): def validation_step(self, batch, batch_idx): x, y = batch - logits = self.forward(x) + logits = self(x) loss = F.nll_loss(logits, y) return {'val_loss': loss} @@ -740,7 +740,7 @@ Just like the validation loop, we define exactly the same steps for testing: class LitMNIST(pl.LightningModule): def test_step(self, batch, batch_idx): x, y = batch - logits = self.forward(x) + logits = self(x) loss = F.nll_loss(logits, y) return {'val_loss': loss} @@ -827,7 +827,7 @@ within it. def training_step(self, batch, batch_idx): x, y = batch - logits = self.forward(x) + logits = self(x) loss = F.nll_loss(logits, y) return loss @@ -855,7 +855,7 @@ In this case, we've set this LightningModel to predict logits. But we could also def training_step(self, batch, batch_idx): x, y = batch - out, l1_feats, l2_feats, l3_feats = self.forward(x) + out, l1_feats, l2_feats, l3_feats = self(x) logits = torch.log_softmax(out, dim=1) ce_loss = F.nll_loss(logits, y) loss = perceptual_loss(l1_feats, l2_feats, l3_feats) + ce_loss @@ -880,7 +880,7 @@ Or maybe we have a model that we use to do generation def training_step(self, batch, batch_idx): x, y = batch representation = self.encoder(x) - imgs = self.forward(representation) + imgs = self(representation) loss = perceptual_loss(imgs, x) return loss diff --git a/docs/source/multi_gpu.rst b/docs/source/multi_gpu.rst index 0f51a654f0..6b8f15b736 100644 --- a/docs/source/multi_gpu.rst +++ b/docs/source/multi_gpu.rst @@ -207,7 +207,7 @@ to illustrate why this is needed, let's look at dataparallel def training_step(self, batch, batch_idx): x, y = batch - y_hat = self.forward(batch) + y_hat = self(batch) # on dp or ddp2 if we did softmax now it would be wrong # because batch is actually a piece of the full batch diff --git a/pl_examples/basic_examples/lightning_module_template.py b/pl_examples/basic_examples/lightning_module_template.py index effd750de5..d508c5f1e9 100644 --- a/pl_examples/basic_examples/lightning_module_template.py +++ b/pl_examples/basic_examples/lightning_module_template.py @@ -106,7 +106,7 @@ class LightningTemplateModel(LightningModule): x, y = batch x = x.view(x.size(0), -1) - y_hat = self.forward(x) + y_hat = self(x) # calculate loss loss_val = self.loss(y, y_hat) @@ -133,7 +133,7 @@ class LightningTemplateModel(LightningModule): """ x, y = batch x = x.view(x.size(0), -1) - y_hat = self.forward(x) + y_hat = self(x) loss_val = self.loss(y, y_hat) diff --git a/pl_examples/domain_templates/gan.py b/pl_examples/domain_templates/gan.py index 0d7f7834b6..5010026b28 100644 --- a/pl_examples/domain_templates/gan.py +++ b/pl_examples/domain_templates/gan.py @@ -105,7 +105,7 @@ class GAN(LightningModule): z = z.cuda(imgs.device.index) # generate images - self.generated_imgs = self.forward(z) + self.generated_imgs = self(z) # log sampled images # sample_imgs = self.generated_imgs[:6] @@ -179,7 +179,7 @@ class GAN(LightningModule): z = z.cuda(self.last_imgs.device.index) # log sampled images - sample_imgs = self.forward(z) + sample_imgs = self(z) grid = torchvision.utils.make_grid(sample_imgs) self.logger.experiment.add_image(f'generated_images', grid, self.current_epoch) diff --git a/pl_examples/full_examples/imagenet/imagenet_example.py b/pl_examples/full_examples/imagenet/imagenet_example.py index 646d092ddb..159ba16ae9 100644 --- a/pl_examples/full_examples/imagenet/imagenet_example.py +++ b/pl_examples/full_examples/imagenet/imagenet_example.py @@ -42,7 +42,7 @@ class ImageNetLightningModel(LightningModule): def training_step(self, batch, batch_idx): images, target = batch - output = self.forward(images) + output = self(images) loss_val = F.cross_entropy(output, target) acc1, acc5 = self.__accuracy(output, target, topk=(1, 5)) @@ -65,7 +65,7 @@ class ImageNetLightningModel(LightningModule): def validation_step(self, batch, batch_idx): images, target = batch - output = self.forward(images) + output = self(images) loss_val = F.cross_entropy(output, target) acc1, acc5 = self.__accuracy(output, target, topk=(1, 5)) diff --git a/pl_examples/full_examples/semantic_segmentation/semseg.py b/pl_examples/full_examples/semantic_segmentation/semseg.py index 8f25243cff..3b8c6dbfcc 100644 --- a/pl_examples/full_examples/semantic_segmentation/semseg.py +++ b/pl_examples/full_examples/semantic_segmentation/semseg.py @@ -143,7 +143,7 @@ class SegModel(pl.LightningModule): img, mask = batch img = img.float() mask = mask.long() - out = self.forward(img) + out = self(img) loss_val = F.cross_entropy(out, mask, ignore_index=250) return {'loss': loss_val} diff --git a/pytorch_lightning/core/__init__.py b/pytorch_lightning/core/__init__.py index ff03a2d32e..231ef7d597 100644 --- a/pytorch_lightning/core/__init__.py +++ b/pytorch_lightning/core/__init__.py @@ -82,7 +82,7 @@ Here are the only required methods. def training_step(self, batch, batch_idx): x, y = batch - y_hat = self.forward(x) + y_hat = self(x) return {'loss': F.cross_entropy(y_hat, y)} def train_dataloader(self): @@ -159,7 +159,7 @@ Thus, if we wanted to add a validation loop you would add this to your Lightning class LitModel(pl.LightningModule): def validation_step(self, batch, batch_idx): x, y = batch - y_hat = self.forward(x) + y_hat = self(x) return {'val_loss': F.cross_entropy(y_hat, y)} def validation_epoch_end(self, outputs): @@ -178,7 +178,7 @@ Add test loop class LitModel(pl.LightningModule): def test_step(self, batch, batch_idx): x, y = batch - y_hat = self.forward(x) + y_hat = self(x) return {'test_loss': F.cross_entropy(y_hat, y)} def test_epoch_end(self, outputs): diff --git a/pytorch_lightning/core/lightning.py b/pytorch_lightning/core/lightning.py index 2a67d32748..c7d4bf8df2 100644 --- a/pytorch_lightning/core/lightning.py +++ b/pytorch_lightning/core/lightning.py @@ -97,7 +97,7 @@ class LightningModule(ABC, GradInformation, ModelIO, ModelHooks): Same as torch.nn.Module.forward(), however in Lightning you want this to define the operations you want to use for prediction (ie: on a server or as a feature extractor). - Normally you'd call self.forward() from your training_step() method. + Normally you'd call self() from your training_step() method. This makes it easy to write a complex system for training with the outputs you'd want in a prediction setting. @@ -117,7 +117,7 @@ class LightningModule(ABC, GradInformation, ModelIO, ModelHooks): def training_step(self, batch, batch_idx): x, y = batch - feature_maps = self.forward(x) + feature_maps = self(x) logits = self.classifier(feature_maps) # ... @@ -171,7 +171,7 @@ class LightningModule(ABC, GradInformation, ModelIO, ModelHooks): x, y, z = batch # implement your own - out = self.forward(x) + out = self(x) loss = self.loss(out, x) logger_logs = {'training_loss': loss} # optional (MUST ALL BE TENSORS) @@ -266,7 +266,7 @@ class LightningModule(ABC, GradInformation, ModelIO, ModelHooks): # batch is 1/num_gpus big x, y = batch - out = self.forward(x) + out = self(x) loss = self.softmax(out) loss = nce_loss(loss) return {'loss': loss} @@ -277,7 +277,7 @@ class LightningModule(ABC, GradInformation, ModelIO, ModelHooks): # batch is 1/num_gpus big x, y = batch - out = self.forward(x) + out = self(x) return {'out': out} def training_step_end(self, outputs): @@ -342,7 +342,7 @@ class LightningModule(ABC, GradInformation, ModelIO, ModelHooks): x, y = batch # implement your own - out = self.forward(x) + out = self(x) loss = self.loss(out, y) # log 6 example images @@ -413,7 +413,7 @@ class LightningModule(ABC, GradInformation, ModelIO, ModelHooks): # batch is 1/num_gpus big x, y = batch - out = self.forward(x) + out = self(x) loss = self.softmax(out) loss = nce_loss(loss) return {'loss': loss} @@ -424,7 +424,7 @@ class LightningModule(ABC, GradInformation, ModelIO, ModelHooks): # batch is 1/num_gpus big x, y = batch - out = self.forward(x) + out = self(x) return {'out': out} def validation_epoch_end(self, outputs): @@ -564,7 +564,7 @@ class LightningModule(ABC, GradInformation, ModelIO, ModelHooks): x, y = batch # implement your own - out = self.forward(x) + out = self(x) loss = self.loss(out, y) # log 6 example images @@ -636,7 +636,7 @@ class LightningModule(ABC, GradInformation, ModelIO, ModelHooks): # batch is 1/num_gpus big x, y = batch - out = self.forward(x) + out = self(x) loss = self.softmax(out) loss = nce_loss(loss) return {'loss': loss} @@ -647,7 +647,7 @@ class LightningModule(ABC, GradInformation, ModelIO, ModelHooks): # batch is 1/num_gpus big x, y = batch - out = self.forward(x) + out = self(x) return {'out': out} def test_step_end(self, outputs): diff --git a/tests/base/debug.py b/tests/base/debug.py index 64f8067e27..a3ee833506 100644 --- a/tests/base/debug.py +++ b/tests/base/debug.py @@ -26,12 +26,12 @@ class CoolModel(pl.LightningModule): def training_step(self, batch, batch_idx): x, y = batch - y_hat = self.forward(x) + y_hat = self(x) return {'training_loss': self.my_loss(y_hat, y)} def validation_step(self, batch, batch_idx): x, y = batch - y_hat = self.forward(x) + y_hat = self(x) return {'val_loss': self.my_loss(y_hat, y)} def validation_epoch_end(self, outputs): diff --git a/tests/base/mixins.py b/tests/base/mixins.py index 0be691726e..1a05049f44 100644 --- a/tests/base/mixins.py +++ b/tests/base/mixins.py @@ -21,7 +21,7 @@ class LightValidationStepMixin: """ x, y = batch x = x.view(x.size(0), -1) - y_hat = self.forward(x) + y_hat = self(x) loss_val = self.loss(y, y_hat) @@ -114,7 +114,7 @@ class LightValidationStepMultipleDataloadersMixin: """ x, y = batch x = x.view(x.size(0), -1) - y_hat = self.forward(x) + y_hat = self(x) loss_val = self.loss(y, y_hat) @@ -273,7 +273,7 @@ class LightTestStepMixin(LightTestDataloader): """ x, y = batch x = x.view(x.size(0), -1) - y_hat = self.forward(x) + y_hat = self(x) loss_test = self.loss(y, y_hat) @@ -360,7 +360,7 @@ class LightTestStepMultipleDataloadersMixin: """ x, y = batch x = x.view(x.size(0), -1) - y_hat = self.forward(x) + y_hat = self(x) loss_test = self.loss(y, y_hat) @@ -413,7 +413,7 @@ class LightTestFitSingleTestDataloadersMixin: """ x, y = batch x = x.view(x.size(0), -1) - y_hat = self.forward(x) + y_hat = self(x) loss_test = self.loss(y, y_hat) @@ -460,7 +460,7 @@ class LightTestFitMultipleTestDataloadersMixin: """ x, y = batch x = x.view(x.size(0), -1) - y_hat = self.forward(x) + y_hat = self(x) loss_test = self.loss(y, y_hat) @@ -512,7 +512,7 @@ class LightValStepFitSingleDataloaderMixin: """ x, y = batch x = x.view(x.size(0), -1) - y_hat = self.forward(x) + y_hat = self(x) loss_val = self.loss(y, y_hat) @@ -558,7 +558,7 @@ class LightValStepFitMultipleDataloadersMixin: """ x, y = batch x = x.view(x.size(0), -1) - y_hat = self.forward(x) + y_hat = self(x) loss_val = self.loss(y, y_hat) diff --git a/tests/base/models.py b/tests/base/models.py index 2b9fc27fb0..e9605ca764 100644 --- a/tests/base/models.py +++ b/tests/base/models.py @@ -54,7 +54,7 @@ class DictHparamsModel(LightningModule): def training_step(self, batch, batch_idx): x, y = batch - y_hat = self.forward(x) + y_hat = self(x) return {'loss': F.cross_entropy(y_hat, y)} def configure_optimizers(self): @@ -140,7 +140,7 @@ class TestModelBase(LightningModule): x, y = batch x = x.view(x.size(0), -1) - y_hat = self.forward(x) + y_hat = self(x) # calculate loss loss_val = self.loss(y, y_hat) diff --git a/tests/models/test_cpu.py b/tests/models/test_cpu.py index 4fd7b3839d..07c9968a41 100644 --- a/tests/models/test_cpu.py +++ b/tests/models/test_cpu.py @@ -345,7 +345,7 @@ def test_tbptt_cpu_model(tmpdir): y_tensor = torch.tensor(y_list, dtype=x_tensor.dtype) assert y_tensor.shape[1] == truncated_bptt_steps, "tbptt split list failed" - pred = self.forward(x_tensor.view(batch_size, truncated_bptt_steps)) + pred = self(x_tensor.view(batch_size, truncated_bptt_steps)) loss_val = torch.nn.functional.mse_loss( pred, y_tensor.view(batch_size, truncated_bptt_steps)) return {