Organize docstring (#4906)
* Organize docstring * Update pl_examples/domain_templates/reinforce_learn_Qnet.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: chaton <thomas@grid.ai>
This commit is contained in:
parent
88792982b5
commit
d3626b7f50
|
@ -1,19 +1,22 @@
|
|||
"""
|
||||
Deep Reinforcement Learning: Deep Q-network (DQN)
|
||||
|
||||
This example is based on https://github.com/PacktPublishing/Deep-Reinforcement-Learning-Hands-On-
|
||||
Second-Edition/blob/master/Chapter06/02_dqn_pong.py
|
||||
|
||||
The template illustrates using Lightning for Reinforcement Learning. The example builds a basic DQN using the
|
||||
classic CartPole environment.
|
||||
|
||||
To run the template, just run:
|
||||
python reinforce_learn_Qnet.py
|
||||
`python reinforce_learn_Qnet.py`
|
||||
|
||||
After ~1500 steps, you will see the total_reward hitting the max score of 200. Open up TensorBoard to
|
||||
see the metrics:
|
||||
After ~1500 steps, you will see the total_reward hitting the max score of 200.
|
||||
Open up TensorBoard to see the metrics:
|
||||
|
||||
tensorboard --logdir default
|
||||
`tensorboard --logdir default`
|
||||
|
||||
References
|
||||
----------
|
||||
|
||||
[1] https://github.com/PacktPublishing/Deep-Reinforcement-Learning-Hands-On-
|
||||
Second-Edition/blob/master/Chapter06/02_dqn_pong.py
|
||||
"""
|
||||
|
||||
import argparse
|
||||
|
|
Loading…
Reference in New Issue