updated docs

This commit is contained in:
William Falcon 2019-07-25 11:52:54 -04:00
parent 600c755460
commit d272f29c88
3 changed files with 59 additions and 14 deletions

View File

@ -42,27 +42,34 @@ To use lightning do 2 things:
```python
import pytorch_lightning as ptl
import torch
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
class CoolModel(ptl.LightningModule):
def __init(self):
# not the best model...
self.l1 = torch.nn.Linear(28*28, 10)
def forward(self, x):
return self.l1(x)
return torch.relu(self.l1(x))
def my_loss(self, y_hat, y):
return F.cross_entropy(y_hat, y)
def training_step(self, batch, batch_nb):
x, y = batch
y_hat = self.forward(x)
return {'tng_loss': some_loss(y_hat, y)}
return {'tng_loss': self.my_loss(y_hat, y)}
def validation_step(self, batch, batch_nb):
x, y = batch
y_hat = self.forward(x)
return {'val_loss': some_loss(y_hat, y)}
return {'val_loss': self.my_loss(y_hat, y)}
def configure_optimizers(self):
return [optim.Adam(self.parameters(), lr=0.02)]
return [torch.optim.Adam(self.parameters(), lr=0.02)]
@ptl.data_loader
def tng_dataloader(self):
@ -75,7 +82,6 @@ class CoolModel(ptl.LightningModule):
@ptl.data_loader
def test_dataloader(self):
return DataLoader(MNIST('path/to/save', train=False), batch_size=32)
```
2. Fit with a [trainer](https://williamfalcon.github.io/pytorch-lightning/Trainer/)

View File

@ -26,6 +26,53 @@ Otherwise, to Define a Lightning Module, implement the following methods:
- [update_tng_log_metrics](RequiredTrainerInterface.md#update_tng_log_metrics)
- [add_model_specific_args](RequiredTrainerInterface.md#add_model_specific_args)
---
**Minimal example**
```python
import pytorch_lightning as ptl
import torch
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
class CoolModel(ptl.LightningModule):
def __init(self):
# not the best model...
self.l1 = torch.nn.Linear(28*28, 10)
def forward(self, x):
return torch.relu(self.l1(x))
def my_loss(self, y_hat, y):
return F.cross_entropy(y_hat, y)
def training_step(self, batch, batch_nb):
x, y = batch
y_hat = self.forward(x)
return {'tng_loss': self.my_loss(y_hat, y)}
def validation_step(self, batch, batch_nb):
x, y = batch
y_hat = self.forward(x)
return {'val_loss': self.my_loss(y_hat, y)}
def configure_optimizers(self):
return [torch.optim.Adam(self.parameters(), lr=0.02)]
@ptl.data_loader
def tng_dataloader(self):
return DataLoader(MNIST('path/to/save', train=True), batch_size=32)
@ptl.data_loader
def val_dataloader(self):
return DataLoader(MNIST('path/to/save', train=False), batch_size=32)
@ptl.data_loader
def test_dataloader(self):
return DataLoader(MNIST('path/to/save', train=False), batch_size=32)
```
---
### training_step

View File

@ -64,14 +64,6 @@ class LightningModule(GradInformation, ModelIO, ModelHooks):
"""
raise NotImplementedError
def loss(self, *args, **kwargs):
"""
Expand model_out into your components
:param model_out:
:return:
"""
raise NotImplementedError
def summarize(self):
model_summary = ModelSummary(self)
print(model_summary)