Clean up last `ModelCheckpoint` `makedirs` call to IOPlugin (#11035)

This commit is contained in:
jjenniferdai 2021-12-14 09:43:57 -08:00 committed by GitHub
parent 7aee00c679
commit d0b67f7376
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 5 additions and 11 deletions

View File

@ -249,7 +249,7 @@ class ModelCheckpoint(Callback):
) )
def on_pretrain_routine_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: def on_pretrain_routine_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
"""When pretrain routine starts we build the ckpt dir on the fly.""" """When pretrain routine starts we resolve the ckpt dir on the fly."""
if self._save_on_train_epoch_end is None: if self._save_on_train_epoch_end is None:
# if the user runs validation multiple times per training epoch or multiple training epochs without # if the user runs validation multiple times per training epoch or multiple training epochs without
# validation, then we run after validation instead of on train epoch end # validation, then we run after validation instead of on train epoch end
@ -600,9 +600,6 @@ class ModelCheckpoint(Callback):
self.dirpath = ckpt_path self.dirpath = ckpt_path
if not trainer.fast_dev_run and trainer.training_type_plugin.should_rank_save_checkpoint:
self._fs.makedirs(self.dirpath, exist_ok=True)
def __warn_if_dir_not_empty(self, dirpath: _PATH) -> None: def __warn_if_dir_not_empty(self, dirpath: _PATH) -> None:
if self.save_top_k != 0 and self._fs.isdir(dirpath) and len(self._fs.ls(dirpath)) > 0: if self.save_top_k != 0 and self._fs.isdir(dirpath) and len(self._fs.ls(dirpath)) > 0:
rank_zero_warn(f"Checkpoint directory {dirpath} exists and is not empty.") rank_zero_warn(f"Checkpoint directory {dirpath} exists and is not empty.")

View File

@ -11,11 +11,13 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import os
from typing import Any, Dict, Optional from typing import Any, Dict, Optional
from pytorch_lightning.plugins.io.torch_plugin import TorchCheckpointIO from pytorch_lightning.plugins.io.torch_plugin import TorchCheckpointIO
from pytorch_lightning.utilities import _OMEGACONF_AVAILABLE, _TPU_AVAILABLE from pytorch_lightning.utilities import _OMEGACONF_AVAILABLE, _TPU_AVAILABLE
from pytorch_lightning.utilities.apply_func import apply_to_collection from pytorch_lightning.utilities.apply_func import apply_to_collection
from pytorch_lightning.utilities.cloud_io import get_filesystem
from pytorch_lightning.utilities.types import _PATH from pytorch_lightning.utilities.types import _PATH
if _TPU_AVAILABLE: if _TPU_AVAILABLE:
@ -36,6 +38,8 @@ class XLACheckpointIO(TorchCheckpointIO):
path: write-target path path: write-target path
storage_options: Optional parameters when saving the model/training states. storage_options: Optional parameters when saving the model/training states.
""" """
fs = get_filesystem(path)
fs.makedirs(os.path.dirname(path), exist_ok=True)
# Todo: TypeError: 'mappingproxy' object does not support item assignment # Todo: TypeError: 'mappingproxy' object does not support item assignment
# Ref: https://github.com/pytorch/xla/issues/2773 # Ref: https://github.com/pytorch/xla/issues/2773
if _OMEGACONF_AVAILABLE: if _OMEGACONF_AVAILABLE:

View File

@ -75,9 +75,6 @@ class SingleTPUPlugin(SingleDevicePlugin):
self.tpu_local_core_rank = xm.get_local_ordinal() self.tpu_local_core_rank = xm.get_local_ordinal()
self.tpu_global_core_rank = xm.get_ordinal() self.tpu_global_core_rank = xm.get_ordinal()
def save(self, state_dict: Dict, path: _PATH) -> None:
xm.save(state_dict, path)
def save_checkpoint(self, checkpoint: Dict[str, Any], filepath: _PATH) -> None: def save_checkpoint(self, checkpoint: Dict[str, Any], filepath: _PATH) -> None:
"""Save model/training states as a checkpoint file through state-dump and file-write. """Save model/training states as a checkpoint file through state-dump and file-write.

View File

@ -1700,10 +1700,6 @@ class Trainer(
# some training types define a world size # some training types define a world size
return getattr(self.training_type_plugin, "world_size", 1) return getattr(self.training_type_plugin, "world_size", 1)
@property
def should_rank_save_checkpoint(self) -> bool:
return self.training_type_plugin.should_rank_save_checkpoint
@property @property
def _distrib_type(self) -> _StrategyType: def _distrib_type(self) -> _StrategyType:
return self._accelerator_connector._distrib_type return self._accelerator_connector._distrib_type