ref: refactored inner eval loop (#3141)
* refactored dataloader process hook * refactored dataloader process hook * refactored dataloader process hook
This commit is contained in:
parent
f064d74be8
commit
ccc923cbb0
|
@ -1,6 +1,7 @@
|
|||
import torch
|
||||
from pytorch_lightning.trainer.supporters import PredictionCollection
|
||||
from pytorch_lightning.core.step_result import EvalResult
|
||||
from pytorch_lightning.core.step_result import Result, EvalResult
|
||||
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
||||
|
||||
|
||||
class EvaluationLoop(object):
|
||||
|
@ -43,11 +44,38 @@ class EvaluationLoop(object):
|
|||
else:
|
||||
self.trainer.call_hook('on_validation_epoch_start', *args, **kwargs)
|
||||
|
||||
def evaluation_step(self, *args, **kwargs):
|
||||
def build_args(self, test_mode, batch, batch_idx, dataloader_idx):
|
||||
# make dataloader_idx arg in validation_step optional
|
||||
args = [batch, batch_idx]
|
||||
|
||||
multiple_val_loaders = (not test_mode and len(self.trainer.val_dataloaders) > 1)
|
||||
multiple_test_loaders = (test_mode and len(self.trainer.test_dataloaders) > 1)
|
||||
|
||||
if multiple_test_loaders or multiple_val_loaders:
|
||||
args.append(dataloader_idx)
|
||||
|
||||
return args
|
||||
|
||||
def evaluation_step(self, test_mode, batch, batch_idx, dataloader_idx):
|
||||
# configure args
|
||||
args = self.build_args(test_mode, batch, batch_idx, dataloader_idx)
|
||||
|
||||
# run actual test step
|
||||
if self.testing:
|
||||
output = self.trainer.accelerator_backend.test_step(*args, **kwargs)
|
||||
output = self.trainer.accelerator_backend.test_step(args)
|
||||
else:
|
||||
output = self.trainer.accelerator_backend.validation_step(*args, **kwargs)
|
||||
output = self.trainer.accelerator_backend.validation_step(args)
|
||||
|
||||
# track batch size for weighted average
|
||||
is_result_obj = isinstance(output, Result)
|
||||
if is_result_obj:
|
||||
output.track_batch_size(len(batch))
|
||||
|
||||
# allow only EvalResult when using structured results (from val_step)
|
||||
if is_result_obj and not isinstance(output, EvalResult):
|
||||
m = 'only EvalResults or dicts are allowed from validation_step'
|
||||
raise MisconfigurationException(m)
|
||||
|
||||
return output
|
||||
|
||||
def evaluation_step_end(self, *args, **kwargs):
|
||||
|
@ -69,8 +97,37 @@ class EvaluationLoop(object):
|
|||
else:
|
||||
self.trainer.call_hook('on_validation_batch_end', *args, **kwargs)
|
||||
|
||||
def evaluation_batch_end_cleanup(self, output, batch_idx, dataloader_idx):
|
||||
# Add step predictions to prediction collection to write later
|
||||
if output is not None:
|
||||
do_write_predictions = isinstance(output, Result) and self.testing
|
||||
if do_write_predictions:
|
||||
self.predictions.add(output.pop('predictions', None))
|
||||
|
||||
# track debug metrics
|
||||
self.trainer.dev_debugger.track_eval_loss_history(self.testing, batch_idx, dataloader_idx, output)
|
||||
|
||||
def on_evaluation_epoch_end(self, *args, **kwargs):
|
||||
if self.testing:
|
||||
self.trainer.call_hook('on_test_epoch_end', *args, **kwargs)
|
||||
else:
|
||||
self.trainer.call_hook('on_validation_epoch_end', *args, **kwargs)
|
||||
|
||||
def log_metrics(self, output, batch_idx):
|
||||
if self.trainer.running_sanity_check:
|
||||
return
|
||||
|
||||
if isinstance(output, EvalResult):
|
||||
step_log_metrics = output.batch_log_metrics
|
||||
step_pbar_metrics = output.batch_pbar_metrics
|
||||
|
||||
if len(step_log_metrics) > 0:
|
||||
# make the metrics appear as a different line in the same graph
|
||||
metrics_by_epoch = {}
|
||||
for k, v in step_log_metrics.items():
|
||||
metrics_by_epoch[f'{k}/epoch_{self.trainer.current_epoch}'] = v
|
||||
|
||||
self.trainer.log_metrics(metrics_by_epoch, {}, step=batch_idx)
|
||||
|
||||
if len(step_pbar_metrics) > 0:
|
||||
self.trainer.add_progress_bar_metrics(step_pbar_metrics)
|
||||
|
|
|
@ -132,8 +132,7 @@ from torch.utils.data import DataLoader
|
|||
|
||||
from pytorch_lightning.core.lightning import LightningModule
|
||||
from pytorch_lightning.utilities import rank_zero_warn, flatten_dict, AMPType
|
||||
from pytorch_lightning.core.step_result import Result, EvalResult
|
||||
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
||||
from pytorch_lightning.core.step_result import EvalResult, Result
|
||||
from pytorch_lightning.trainer.evaluate_loop import EvaluationLoop
|
||||
|
||||
try:
|
||||
|
@ -273,55 +272,19 @@ class TrainerEvaluationLoopMixin(ABC):
|
|||
if batch_idx >= dl_max_batches:
|
||||
break
|
||||
|
||||
# -----------------
|
||||
# eval_batch_start
|
||||
# -----------------
|
||||
# val loop hooks
|
||||
self.evaluation_loop.on_evaluation_batch_start(batch, batch_idx, dataloader_idx)
|
||||
|
||||
# -----------------
|
||||
# RUN EVALUATION STEP
|
||||
# -----------------
|
||||
args = self.build_args(test_mode, batch, batch_idx, dataloader_idx)
|
||||
output = self.evaluation_loop.evaluation_step(args)
|
||||
|
||||
# track batch size for weighted average
|
||||
is_result_obj = isinstance(output, Result)
|
||||
if is_result_obj:
|
||||
output.track_batch_size(len(batch))
|
||||
|
||||
# allow only EvalResult when using structured results (from val_step)
|
||||
if is_result_obj and not isinstance(output, EvalResult):
|
||||
m = 'only EvalResults or dicts are allowed from validation_step'
|
||||
raise MisconfigurationException(m)
|
||||
|
||||
# ------------------
|
||||
# EVAL STEP END
|
||||
# ------------------
|
||||
output = self.evaluation_loop.evaluation_step(test_mode, batch, batch_idx, dataloader_idx)
|
||||
output = self.evaluation_loop.evaluation_step_end(output)
|
||||
|
||||
# ------------------
|
||||
# Hook: on_eval_batch_end
|
||||
# ------------------
|
||||
self.evaluation_loop.on_evaluation_batch_end(batch, batch_idx, dataloader_idx)
|
||||
|
||||
# ----------------------
|
||||
# Post processing
|
||||
# ----------------------
|
||||
# track outputs for collation
|
||||
# clean up
|
||||
self.evaluation_loop.evaluation_batch_end_cleanup(output, batch_idx, dataloader_idx)
|
||||
self.evaluation_loop.log_metrics(output, batch_idx)
|
||||
|
||||
if output is not None:
|
||||
|
||||
# Add step predictions to prediction collection to write later
|
||||
do_write_predictions = is_result_obj and test_mode
|
||||
if do_write_predictions:
|
||||
self.evaluation_loop.predictions.add(output.pop('predictions', None))
|
||||
|
||||
dl_outputs.append(output)
|
||||
|
||||
self.__eval_add_step_metrics(output, batch_idx)
|
||||
|
||||
# track debug metrics
|
||||
self.dev_debugger.track_eval_loss_history(test_mode, batch_idx, dataloader_idx, output)
|
||||
|
||||
self.evaluation_loop.outputs.append(dl_outputs)
|
||||
|
||||
# ---------------------
|
||||
|
@ -454,23 +417,6 @@ class TrainerEvaluationLoopMixin(ABC):
|
|||
eval_results = eval_results[0]
|
||||
return eval_results
|
||||
|
||||
def __eval_add_step_metrics(self, output, batch_idx):
|
||||
# track step level metrics
|
||||
if isinstance(output, EvalResult) and not self.running_sanity_check:
|
||||
step_log_metrics = output.batch_log_metrics
|
||||
step_pbar_metrics = output.batch_pbar_metrics
|
||||
|
||||
if len(step_log_metrics) > 0:
|
||||
# make the metrics appear as a different line in the same graph
|
||||
metrics_by_epoch = {}
|
||||
for k, v in step_log_metrics.items():
|
||||
metrics_by_epoch[f'{k}/epoch_{self.current_epoch}'] = v
|
||||
|
||||
self.log_metrics(metrics_by_epoch, {}, step=batch_idx)
|
||||
|
||||
if len(step_pbar_metrics) > 0:
|
||||
self.add_progress_bar_metrics(step_pbar_metrics)
|
||||
|
||||
def __auto_reduce_result_objs(self, outputs):
|
||||
# outputs has a list of results per dataloader
|
||||
eval_results = []
|
||||
|
@ -588,12 +534,3 @@ class TrainerEvaluationLoopMixin(ABC):
|
|||
print('-' * 80)
|
||||
|
||||
return eval_loop_results
|
||||
|
||||
def build_args(self, test_mode, batch, batch_idx, dataloader_idx):
|
||||
# make dataloader_idx arg in validation_step optional
|
||||
args = [batch, batch_idx]
|
||||
|
||||
if (test_mode and len(self.test_dataloaders) > 1) or (not test_mode and len(self.val_dataloaders) > 1):
|
||||
args.append(dataloader_idx)
|
||||
|
||||
return args
|
||||
|
|
Loading…
Reference in New Issue