Remove legacy dead code in DDP script launch (#11678)
Co-authored-by: Jirka <jirka.borovec@seznam.cz> Co-authored-by: Carlos Mocholi <carlossmocholi@gmail.com>
This commit is contained in:
parent
3bc2407239
commit
cc43d07db1
|
@ -57,7 +57,7 @@ from pytorch_lightning.utilities.distributed import (
|
|||
sync_ddp_if_available,
|
||||
)
|
||||
from pytorch_lightning.utilities.enums import _StrategyType
|
||||
from pytorch_lightning.utilities.exceptions import DeadlockDetectedException, MisconfigurationException
|
||||
from pytorch_lightning.utilities.exceptions import DeadlockDetectedException
|
||||
from pytorch_lightning.utilities.seed import reset_seed
|
||||
from pytorch_lightning.utilities.types import STEP_OUTPUT
|
||||
|
||||
|
@ -211,13 +211,6 @@ class DDPStrategy(ParallelStrategy):
|
|||
else: # Script called as `python -m a.b.c`
|
||||
command = [sys.executable, "-m", __main__.__spec__.name] + sys.argv[1:]
|
||||
|
||||
# the visible devices tell us how many GPUs we want to use.
|
||||
# when the trainer script was called the device has already been scoped by the time
|
||||
# code reaches this point. so, to call the scripts, we need to leave cuda visible devices alone
|
||||
# but forward the GPUs selected via environment variables
|
||||
if self.parallel_devices is None:
|
||||
raise MisconfigurationException("you selected (distribute_backend = ddp) but did not set Trainer(gpus=?)")
|
||||
|
||||
os.environ["WORLD_SIZE"] = f"{self.num_processes * self.num_nodes}"
|
||||
|
||||
self.interactive_ddp_procs = []
|
||||
|
|
Loading…
Reference in New Issue