diff --git a/examples/pytorch/basics/autoencoder.py b/examples/pytorch/basics/autoencoder.py index b31a7392f5..be22d40a32 100644 --- a/examples/pytorch/basics/autoencoder.py +++ b/examples/pytorch/basics/autoencoder.py @@ -44,7 +44,7 @@ class ImageSampler(callbacks.Callback): nrow: int = 8, padding: int = 2, normalize: bool = True, - norm_range: Optional[Tuple[int, int]] = None, + value_range: Optional[Tuple[int, int]] = None, scale_each: bool = False, pad_value: int = 0, ) -> None: @@ -56,7 +56,7 @@ class ImageSampler(callbacks.Callback): padding: Amount of padding. Default: ``2``. normalize: If ``True``, shift the image to the range (0, 1), by the min and max values specified by :attr:`range`. Default: ``False``. - norm_range: Tuple (min, max) where min and max are numbers, + value_range: Tuple (min, max) where min and max are numbers, then these numbers are used to normalize the image. By default, min and max are computed from the tensor. scale_each: If ``True``, scale each image in the batch of @@ -71,7 +71,7 @@ class ImageSampler(callbacks.Callback): self.nrow = nrow self.padding = padding self.normalize = normalize - self.norm_range = norm_range + self.value_range = value_range self.scale_each = scale_each self.pad_value = pad_value @@ -81,7 +81,7 @@ class ImageSampler(callbacks.Callback): nrow=self.nrow, padding=self.padding, normalize=self.normalize, - value_range=self.norm_range, + value_range=self.value_range, scale_each=self.scale_each, pad_value=self.pad_value, )