refactor Fabric tests to use launch method (#17648)

Co-authored-by: bas <bas.krahmer@talentflyxpert.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
Bas Krahmer 2023-05-19 19:42:49 +02:00 committed by GitHub
parent 3a68493d0a
commit ca9e006681
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 125 additions and 134 deletions

View File

@ -31,78 +31,78 @@ from tests_fabric.test_fabric import BoringModel
@RunIf(min_cuda_gpus=2, standalone=True, deepspeed=True)
def test_deepspeed_multiple_models():
class RunFabric(Fabric):
def run(self):
model = BoringModel()
optimizer = torch.optim.SGD(model.parameters(), lr=0.0001)
model, optimizer = self.setup(model, optimizer)
def run(fabric_obj):
model = BoringModel()
optimizer = torch.optim.SGD(model.parameters(), lr=0.0001)
model, optimizer = fabric_obj.setup(model, optimizer)
for i in range(2):
optimizer.zero_grad()
x = model(torch.randn(1, 32).to(self.device))
loss = x.sum()
if i == 0:
# the weights are not initialized with stage 3 until backward is run once
assert all(w.nelement() == 0 for w in model.state_dict().values())
self.backward(loss, model=model)
if i == 0:
# save for later to check that the weights were updated
state_dict = deepcopy(model.state_dict())
optimizer.step()
for i in range(2):
optimizer.zero_grad()
x = model(torch.randn(1, 32).to(fabric_obj.device))
loss = x.sum()
if i == 0:
# the weights are not initialized with stage 3 until backward is run once
assert all(w.nelement() == 0 for w in model.state_dict().values())
fabric_obj.backward(loss, model=model)
if i == 0:
# save for later to check that the weights were updated
state_dict = deepcopy(model.state_dict())
optimizer.step()
# check that the model trained, the weights from step 1 do not match the weights from step 2
for mw_b, mw_a in zip(state_dict.values(), model.state_dict().values()):
assert not torch.allclose(mw_b, mw_a)
# check that the model trained, the weights from step 1 do not match the weights from step 2
for mw_b, mw_a in zip(state_dict.values(), model.state_dict().values()):
assert not torch.allclose(mw_b, mw_a)
self.seed_everything(42)
model_1 = BoringModel()
optimizer_1 = torch.optim.SGD(model_1.parameters(), lr=0.0001)
fabric_obj.seed_everything(42)
model_1 = BoringModel()
optimizer_1 = torch.optim.SGD(model_1.parameters(), lr=0.0001)
self.seed_everything(42)
model_2 = BoringModel()
optimizer_2 = torch.optim.SGD(model_2.parameters(), lr=0.0001)
fabric_obj.seed_everything(42)
model_2 = BoringModel()
optimizer_2 = torch.optim.SGD(model_2.parameters(), lr=0.0001)
for mw_1, mw_2 in zip(model_1.state_dict().values(), model_2.state_dict().values()):
assert torch.allclose(mw_1, mw_2)
for mw_1, mw_2 in zip(model_1.state_dict().values(), model_2.state_dict().values()):
assert torch.allclose(mw_1, mw_2)
model_1, optimizer_1 = self.setup(model_1, optimizer_1)
model_2, optimizer_2 = self.setup(model_2, optimizer_2)
model_1, optimizer_1 = fabric_obj.setup(model_1, optimizer_1)
model_2, optimizer_2 = fabric_obj.setup(model_2, optimizer_2)
# train model_1 first
self.seed_everything(42)
data_list = []
for _ in range(2):
optimizer_1.zero_grad()
data = torch.randn(1, 32).to(self.device)
data_list.append(data)
x = model_1(data)
loss = x.sum()
self.backward(loss, model=model_1)
optimizer_1.step()
# train model_1 first
fabric_obj.seed_everything(42)
data_list = []
for _ in range(2):
optimizer_1.zero_grad()
data = torch.randn(1, 32).to(fabric_obj.device)
data_list.append(data)
x = model_1(data)
loss = x.sum()
fabric_obj.backward(loss, model=model_1)
optimizer_1.step()
# the weights do not match
assert all(w.nelement() > 1 for w in model_1.state_dict().values())
assert all(w.nelement() == 0 for w in model_2.state_dict().values())
# the weights do not match
assert all(w.nelement() > 1 for w in model_1.state_dict().values())
assert all(w.nelement() == 0 for w in model_2.state_dict().values())
# now train model_2 with the same data
for data in data_list:
optimizer_2.zero_grad()
x = model_2(data)
loss = x.sum()
self.backward(loss, model=model_2)
optimizer_2.step()
# now train model_2 with the same data
for data in data_list:
optimizer_2.zero_grad()
x = model_2(data)
loss = x.sum()
fabric_obj.backward(loss, model=model_2)
optimizer_2.step()
# the weights should match
for mw_1, mw_2 in zip(model_1.state_dict().values(), model_2.state_dict().values()):
assert torch.allclose(mw_1, mw_2)
# the weights should match
for mw_1, mw_2 in zip(model_1.state_dict().values(), model_2.state_dict().values()):
assert torch.allclose(mw_1, mw_2)
# Verify collectives works as expected
ranks = self.all_gather(torch.tensor([self.local_rank]).to(self.device))
assert torch.allclose(ranks.cpu(), torch.tensor([[0], [1]]))
assert self.broadcast(True)
assert self.is_global_zero == (self.local_rank == 0)
# Verify collectives works as expected
ranks = fabric_obj.all_gather(torch.tensor([fabric_obj.local_rank]).to(fabric_obj.device))
assert torch.allclose(ranks.cpu(), torch.tensor([[0], [1]]))
assert fabric_obj.broadcast(True)
assert fabric_obj.is_global_zero == (fabric_obj.local_rank == 0)
RunFabric(strategy=DeepSpeedStrategy(stage=3, logging_batch_size_per_gpu=1), devices=2, accelerator="gpu").run()
fabric = Fabric(strategy=DeepSpeedStrategy(stage=3, logging_batch_size_per_gpu=1), devices=2, accelerator="gpu")
fabric.launch(run)
@RunIf(min_cuda_gpus=1, deepspeed=True)
@ -118,19 +118,18 @@ def test_deepspeed_multiple_models():
def test_deepspeed_auto_batch_size_config_select(dataset_cls, logging_batch_size_per_gpu, expected_batch_size):
"""Test to ensure that the batch size is correctly set as expected for deepspeed logging purposes."""
class RunFabric(Fabric):
def run(self):
assert isinstance(self._strategy, DeepSpeedStrategy)
_ = self.setup_dataloaders(DataLoader(dataset_cls(32, 64)))
config = self._strategy.config
assert config["train_micro_batch_size_per_gpu"] == expected_batch_size
def run(fabric_obj):
assert isinstance(fabric_obj._strategy, DeepSpeedStrategy)
_ = fabric_obj.setup_dataloaders(DataLoader(dataset_cls(32, 64)))
config = fabric_obj._strategy.config
assert config["train_micro_batch_size_per_gpu"] == expected_batch_size
fabric = RunFabric(
fabric = Fabric(
accelerator="cuda",
devices=1,
strategy=DeepSpeedStrategy(logging_batch_size_per_gpu=logging_batch_size_per_gpu, zero_optimization=False),
)
fabric.run()
fabric.launch(run)
@RunIf(min_cuda_gpus=1, standalone=True, deepspeed=True)
@ -138,21 +137,20 @@ def test_deepspeed_configure_optimizers():
"""Test that the deepspeed strategy with default initialization wraps the optimizer correctly."""
from deepspeed.runtime.zero.stage_1_and_2 import DeepSpeedZeroOptimizer
class RunFabric(Fabric):
def run(self):
model = nn.Linear(3, 3)
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
model, optimizer = self.setup(model, optimizer)
assert isinstance(optimizer.optimizer, DeepSpeedZeroOptimizer)
assert isinstance(optimizer.optimizer.optimizer, torch.optim.SGD)
def run(fabric_obj):
model = nn.Linear(3, 3)
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
model, optimizer = fabric_obj.setup(model, optimizer)
assert isinstance(optimizer.optimizer, DeepSpeedZeroOptimizer)
assert isinstance(optimizer.optimizer.optimizer, torch.optim.SGD)
fabric = RunFabric(
fabric = Fabric(
strategy=DeepSpeedStrategy(),
accelerator="cuda",
devices=1,
precision="16-mixed",
)
fabric.run()
fabric.launch(run)
@RunIf(min_cuda_gpus=1, deepspeed=True)
@ -160,25 +158,24 @@ def test_deepspeed_custom_precision_params():
"""Test that if the FP16 parameters are set via the DeepSpeedStrategy, the deepspeed config contains these
changes."""
class RunFabric(Fabric):
def run(self):
assert self._strategy._config_initialized
assert self._strategy.config["fp16"]["loss_scale"] == 10
assert self._strategy.config["fp16"]["initial_scale_power"] == 11
assert self._strategy.config["fp16"]["loss_scale_window"] == 12
assert self._strategy.config["fp16"]["hysteresis"] == 13
assert self._strategy.config["fp16"]["min_loss_scale"] == 14
def run(fabric_obj):
assert fabric_obj._strategy._config_initialized
assert fabric_obj._strategy.config["fp16"]["loss_scale"] == 10
assert fabric_obj._strategy.config["fp16"]["initial_scale_power"] == 11
assert fabric_obj._strategy.config["fp16"]["loss_scale_window"] == 12
assert fabric_obj._strategy.config["fp16"]["hysteresis"] == 13
assert fabric_obj._strategy.config["fp16"]["min_loss_scale"] == 14
strategy = DeepSpeedStrategy(
loss_scale=10, initial_scale_power=11, loss_scale_window=12, hysteresis=13, min_loss_scale=14
)
fabric = RunFabric(
fabric = Fabric(
strategy=strategy,
precision="16-mixed",
accelerator="cuda",
devices=1,
)
fabric.run()
fabric.launch(run)
@RunIf(min_cuda_gpus=1, standalone=True, deepspeed=True)
@ -187,21 +184,20 @@ def test_deepspeed_custom_activation_checkpointing_params_forwarded():
correctly."""
import deepspeed
class RunFabric(Fabric):
def run(self):
model = nn.Linear(3, 3)
optimizer = torch.optim.Adam(model.parameters())
def run(fabric_obj):
model = nn.Linear(3, 3)
optimizer = torch.optim.Adam(model.parameters())
with mock.patch("deepspeed.checkpointing.configure", wraps=deepspeed.checkpointing.configure) as configure:
self.setup(model, optimizer)
with mock.patch("deepspeed.checkpointing.configure", wraps=deepspeed.checkpointing.configure) as configure:
fabric_obj.setup(model, optimizer)
configure.assert_called_with(
mpu_=None,
partition_activations=True,
contiguous_checkpointing=True,
checkpoint_in_cpu=True,
profile=None,
)
configure.assert_called_with(
mpu_=None,
partition_activations=True,
contiguous_checkpointing=True,
checkpoint_in_cpu=True,
profile=None,
)
strategy = DeepSpeedStrategy(
partition_activations=True,
@ -209,13 +205,13 @@ def test_deepspeed_custom_activation_checkpointing_params_forwarded():
contiguous_memory_optimization=True,
synchronize_checkpoint_boundary=True,
)
fabric = RunFabric(
fabric = Fabric(
strategy=strategy,
precision="16-mixed",
accelerator="cuda",
devices=1,
)
fabric.run()
fabric.launch(run)
class ModelParallelClassification(BoringFabric):

View File

@ -55,17 +55,13 @@ class BoringModel(nn.Module):
def test_run_input_output():
"""Test that the dynamically patched run() method receives the input arguments and returns the result."""
class RunFabric(Fabric):
run_args = ()
run_kwargs = {}
def run(fabric_obj, *args, **kwargs):
fabric_obj.run_args = args
fabric_obj.run_kwargs = kwargs
return "result"
def run(self, *args, **kwargs):
self.run_args = args
self.run_kwargs = kwargs
return "result"
fabric = RunFabric()
result = fabric.run(1, 2, three=3)
fabric = Fabric()
result = fabric.launch(run, 1, 2, three=3)
assert result == "result"
assert fabric.run_args == (1, 2)
assert fabric.run_kwargs == {"three": 3}
@ -322,12 +318,12 @@ def test_setup_dataloaders_captures_dataloader_arguments(ctx_manager):
"""Test that Fabric intercepts the DataLoader constructor arguments with a context manager in its run
method."""
class RunFabric(Fabric):
def run(self):
# One for BatchSampler, another for DataLoader
assert ctx_manager().__enter__.call_count == 2
def run(_):
# One for BatchSampler, another for DataLoader
assert ctx_manager().__enter__.call_count == 2
RunFabric().run()
fabric = Fabric()
fabric.launch(run)
assert ctx_manager().__exit__.call_count == 2
@ -538,27 +534,26 @@ def test_to_device(accelerator, expected):
if not pjrt.using_pjrt():
expected = "xla:1"
class RunFabric(Fabric):
def run(self):
expected_device = torch.device(expected)
def run(_):
expected_device = torch.device(expected)
# module
module = torch.nn.Linear(2, 3)
module = fabric.to_device(module)
assert all(param.device == expected_device for param in module.parameters())
# module
module = torch.nn.Linear(2, 3)
module = fabric.to_device(module)
assert all(param.device == expected_device for param in module.parameters())
# tensor
tensor = torch.rand(2, 2)
tensor = fabric.to_device(tensor)
assert tensor.device == expected_device
# tensor
tensor = torch.rand(2, 2)
tensor = fabric.to_device(tensor)
assert tensor.device == expected_device
# collection
collection = {"data": torch.rand(2, 2), "int": 1}
collection = fabric.to_device(collection)
assert collection["data"].device == expected_device
# collection
collection = {"data": torch.rand(2, 2), "int": 1}
collection = fabric.to_device(collection)
assert collection["data"].device == expected_device
fabric = RunFabric(accelerator=accelerator, devices=1)
fabric.run()
fabric = Fabric(accelerator=accelerator, devices=1)
fabric.launch(run)
def test_rank_properties():