Add usage of Jupyter magic command for loggers (#12333)

Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com>
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
This commit is contained in:
Manan Goel 2022-03-29 09:45:11 +05:30 committed by GitHub
parent 42169a23a0
commit c6cb6341e7
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 30 additions and 0 deletions

View File

@ -175,6 +175,19 @@ The :class:`~pytorch_lightning.loggers.TensorBoardLogger` is available anywhere
some_img = fake_image()
self.logger.experiment.add_image("generated_images", some_img, 0)
To see your logs, run the following command in the terminal:
.. code-block:: bash
tensorboard --logdir=<logging_folder>
To visualize tensorboard in a jupyter notebook environment, run the following command in a jupyter cell:
.. code-block:: bash
%reload_ext tensorboard
%tensorboard --logdir=<logging_folder>
.. seealso::
:class:`~pytorch_lightning.loggers.TensorBoardLogger` docs.
@ -217,6 +230,23 @@ The :class:`~pytorch_lightning.loggers.WandbLogger` is available anywhere except
# Option 2 for specifically logging images
self.logger.log_image(key="generated_images", images=[some_img])
To visualize using wandb in a jupyter notebook environment use the following magic line command:
.. code-block:: shell
%%wandb
# Your training loop here
To display any existing dashboards, sweeps or reports directly in your notebook using the %wandb magic:
.. code-block:: shell
# Display a project workspace
%wandb USERNAME/PROJECT
More information is available `here <https://docs.wandb.ai/guides/track/jupyter>`__.
.. seealso::
- :class:`~pytorch_lightning.loggers.WandbLogger` docs.
- `W&B Documentation <https://docs.wandb.ai/integrations/lightning>`__