Fix typing in `pl.overrides.distributed` (#10797)
* fix typing * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
f407a00cec
commit
c6b52ef3bd
|
@ -70,7 +70,6 @@ module = [
|
|||
"pytorch_lightning.loggers.test_tube",
|
||||
"pytorch_lightning.loggers.wandb",
|
||||
"pytorch_lightning.loops.epoch.training_epoch_loop",
|
||||
"pytorch_lightning.overrides.distributed",
|
||||
"pytorch_lightning.plugins.environments.lightning_environment",
|
||||
"pytorch_lightning.plugins.environments.lsf_environment",
|
||||
"pytorch_lightning.plugins.environments.slurm_environment",
|
||||
|
|
|
@ -12,9 +12,10 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import itertools
|
||||
from typing import Any, Iterator, List, Optional
|
||||
from typing import Any, cast, Iterator, List, Optional, Sized, Union
|
||||
|
||||
import torch
|
||||
from torch import Tensor
|
||||
from torch.nn.parallel import DistributedDataParallel
|
||||
from torch.utils.data import BatchSampler, DistributedSampler, Sampler
|
||||
|
||||
|
@ -42,11 +43,11 @@ class LightningDistributedModule(_LightningModuleWrapperBase):
|
|||
super().__init__(pl_module)
|
||||
|
||||
|
||||
def _find_tensors(obj): # pragma: no-cover
|
||||
r"""
|
||||
Recursively find all tensors contained in the specified object.
|
||||
"""
|
||||
if isinstance(obj, torch.Tensor):
|
||||
def _find_tensors(
|
||||
obj: Union[Tensor, list, tuple, dict, Any]
|
||||
) -> Union[List[Tensor], itertools.chain]: # pragma: no-cover
|
||||
"""Recursively find all tensors contained in the specified object."""
|
||||
if isinstance(obj, Tensor):
|
||||
return [obj]
|
||||
if isinstance(obj, (list, tuple)):
|
||||
return itertools.chain(*map(_find_tensors, obj))
|
||||
|
@ -58,27 +59,26 @@ def _find_tensors(obj): # pragma: no-cover
|
|||
# In manual_optimization, we need to call reducer prepare_for_backward.
|
||||
# Note: Keep track of Pytorch DDP and update if there is a change
|
||||
# https://github.com/pytorch/pytorch/blob/v1.7.1/torch/nn/parallel/distributed.py#L626-L638
|
||||
def prepare_for_backward(model: DistributedDataParallel, output: Any):
|
||||
def prepare_for_backward(model: DistributedDataParallel, output: Any) -> None:
|
||||
# `prepare_for_backward` is `DistributedDataParallel` specific.
|
||||
if not isinstance(model, DistributedDataParallel):
|
||||
return
|
||||
if torch.is_grad_enabled() and model.require_backward_grad_sync:
|
||||
model.require_forward_param_sync = True
|
||||
model.require_forward_param_sync = True # type: ignore[assignment]
|
||||
# We'll return the output object verbatim since it is a freeform
|
||||
# object. We need to find any tensors in this object, though,
|
||||
# because we need to figure out which parameters were used during
|
||||
# this forward pass, to ensure we short circuit reduction for any
|
||||
# unused parameters. Only if `find_unused_parameters` is set.
|
||||
if model.find_unused_parameters:
|
||||
model.reducer.prepare_for_backward(list(_find_tensors(output)))
|
||||
args = list(_find_tensors(output)) if model.find_unused_parameters else []
|
||||
reducer = cast(torch._C._distributed_c10d.Reducer, model.reducer)
|
||||
reducer.prepare_for_backward(args)
|
||||
else:
|
||||
model.reducer.prepare_for_backward([])
|
||||
else:
|
||||
model.require_forward_param_sync = False
|
||||
model.require_forward_param_sync = False # type: ignore[assignment]
|
||||
|
||||
|
||||
class UnrepeatedDistributedSampler(DistributedSampler):
|
||||
"""A fork of the pytorch DistributedSampler that doesn't repeat data, instead allowing the number of batches
|
||||
"""A fork of the PyTorch DistributedSampler that doesn't repeat data, instead allowing the number of batches
|
||||
per process to be off-by-one from each other. This makes this sampler usable for predictions (it's
|
||||
deterministic and doesn't require shuffling). It is potentially unsafe to use this sampler for training,
|
||||
because during training the DistributedDataParallel syncs buffers on each forward pass, so it could freeze if
|
||||
|
@ -91,6 +91,8 @@ class UnrepeatedDistributedSampler(DistributedSampler):
|
|||
|
||||
def __init__(self, *args: Any, **kwargs: Any) -> None:
|
||||
super().__init__(*args, **kwargs)
|
||||
if not isinstance(self.dataset, Sized):
|
||||
raise TypeError("The given dataset must implement the `__len__` method.")
|
||||
self.num_samples = len(range(self.rank, len(self.dataset), self.num_replicas))
|
||||
self.total_size = len(self.dataset)
|
||||
# If any process has at least one batch, every other process needs to
|
||||
|
@ -98,6 +100,8 @@ class UnrepeatedDistributedSampler(DistributedSampler):
|
|||
assert self.num_samples >= 1 or self.total_size == 0
|
||||
|
||||
def __iter__(self) -> Iterator[List[int]]:
|
||||
if not isinstance(self.dataset, Sized):
|
||||
raise TypeError("The given dataset must implement the `__len__` method.")
|
||||
if self.shuffle:
|
||||
# deterministically shuffle based on epoch
|
||||
g = torch.Generator()
|
||||
|
|
Loading…
Reference in New Issue