diff --git a/CHANGELOG.md b/CHANGELOG.md index e3d6110c52..7529a35c3e 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -9,15 +9,20 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/). ### Added - Added flag `replace_sampler_ddp` to manually disaple sampler replacement in ddp ([#1513](https://github.com/PyTorchLightning/pytorch-lightning/pull/1513)) + +- Added speed parity tests (max 1 sec difference per epoch)([#1482](https://github.com/PyTorchLightning/pytorch-lightning/pull/1482)) + - Added `auto_select_gpus` flag to trainer that enables automatic selection of available GPUs on exclusive mode systems. - Added learining rate finder ([#1347](https://github.com/PyTorchLightning/pytorch-lightning/pull/1347)) - Added support for ddp mode in clusters without SLURM ([#1345](https://github.com/PyTorchLightning/pytorch-lightning/issues/1345)) -- Added learning rate finder ([#1347](https://github.com/PyTorchLightning/pytorch-lightning/pull/1347)) +- Added `test_dataloaders` parameter to `Trainer.test()` ([#1393](https://github.com/PyTorchLightning/pytorch-lightning/issues/1393)) -- Added `terminate_on_nan` flag to trainer that performs a NaN check with each training iteration when set to `True`. ([#1475](https://github.com/PyTorchLightning/pytorch-lightning/pull/1475)) +- Added `terminate_on_nan` flag to trainer that performs a NaN check with each training iteration when set to `True` ([#1475](https://github.com/PyTorchLightning/pytorch-lightning/pull/1475)) + +- Added `ddp_cpu` backend for testing ddp without GPUs ([#1158](https://github.com/PyTorchLightning/pytorch-lightning/pull/1158)) ### Changed @@ -31,42 +36,38 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/). ### Deprecated -- ### Removed -- +- Removed `test_dataloaders` parameter from `Trainer.fit()` ([#1393](https://github.com/PyTorchLightning/pytorch-lightning/issues/1393)) -- ### Fixed +- Fixed memory leak from opt return ([#1528](https://github.com/PyTorchLightning/pytorch-lightning/pull/1528)) - Fixed saving checkpoint before deleting old ones ([#1453](https://github.com/PyTorchLightning/pytorch-lightning/pull/1453)) - Fixed loggers - flushing last logged metrics even before continue, e.g. `trainer.test()` results ([#1459](https://github.com/PyTorchLightning/pytorch-lightning/pull/1459)) +- Fixed optimizer configuration when `configure_optimizers` returns dict without `lr_scheduler` ([#1443](https://github.com/PyTorchLightning/pytorch-lightning/pull/1443)) + - Fixed LightningModule - Mixing hparams and arguments in `LightningModule.__init__()` crashes load_from_checkpoint() ([#1505](https://github.com/PyTorchLightning/pytorch-lightning/pull/1505)) - Added a missing call to the `on_before_zero_grad` model hook ([#1493](https://github.com/PyTorchLightning/pytorch-lightning/pull/1493)). - Fixed a bug that caused the `callbacks` Trainer argument to reference a global variable ([#1534](https://github.com/PyTorchLightning/pytorch-lightning/pull/1534)). + ## [0.7.3] - 2020-04-09 ### Added - Added `rank_zero_warn` for warning only in rank 0 ([#1428](https://github.com/PyTorchLightning/pytorch-lightning/pull/1428)) -- Added `test_dataloaders` parameter to `Trainer.test()` ([#1393](https://github.com/PyTorchLightning/pytorch-lightning/issues/1393)) - -### Changed - -- Removed `test_dataloaders` parameter from `Trainer.fit()` ([#1393](https://github.com/PyTorchLightning/pytorch-lightning/issues/1393)) ### Fixed -- Fixed optimizer configuration when `configure_optimizers` returns dict without `lr_scheduler` ([#1443](https://github.com/PyTorchLightning/pytorch-lightning/pull/1443)) - Fixed default `DistributedSampler` for DDP training ([#1425](https://github.com/PyTorchLightning/pytorch-lightning/pull/1425)) - Fixed workers warning not on windows ([#1430](https://github.com/PyTorchLightning/pytorch-lightning/pull/1430)) - Fixed returning tuple from `run_training_batch` ([#1431](https://github.com/PyTorchLightning/pytorch-lightning/pull/1431)) @@ -77,7 +78,6 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/). ### Added -- Added speed parity tests (max 1 sec difference per epoch)([#1482](https://github.com/PyTorchLightning/pytorch-lightning/pull/1482)) - Added same step loggers' metrics aggregation ([#1278](https://github.com/PyTorchLightning/pytorch-lightning/pull/1278)) - Added parity test between a vanilla MNIST model and lightning model ([#1284](https://github.com/PyTorchLightning/pytorch-lightning/pull/1284)) - Added parity test between a vanilla RNN model and lightning model ([#1351](https://github.com/PyTorchLightning/pytorch-lightning/pull/1351)) diff --git a/docs/source/conf.py b/docs/source/conf.py index 9a9948680b..eff6dd1aa6 100644 --- a/docs/source/conf.py +++ b/docs/source/conf.py @@ -227,7 +227,8 @@ man_pages = [ # dir menu entry, description, category) texinfo_documents = [ (master_doc, project, project + ' Documentation', author, project, - 'One line description of project.', 'Miscellaneous'), + 'The lightweight PyTorch wrapper for ML researchers. Scale your models. Write less boilerplate.', + 'Miscellaneous'), ] # -- Options for Epub output ------------------------------------------------- diff --git a/pytorch_lightning/__init__.py b/pytorch_lightning/__init__.py index 668c976635..41e458975d 100644 --- a/pytorch_lightning/__init__.py +++ b/pytorch_lightning/__init__.py @@ -9,6 +9,27 @@ __homepage__ = 'https://github.com/PyTorchLightning/pytorch-lightning' # this has to be simple string, see: https://github.com/pypa/twine/issues/522 __docs__ = "PyTorch Lightning is the lightweight PyTorch wrapper for ML researchers." \ " Scale your models. Write less boilerplate." +__long_docs__ = """ +Lightning is a way to organize your PyTorch code to decouple the science code from the engineering. + It's more of a style-guide than a framework. + +In Lightning, you organize your code into 3 distinct categories: + +1. Research code (goes in the LightningModule). +2. Engineering code (you delete, and is handled by the Trainer). +3. Non-essential research code (logging, etc. this goes in Callbacks). + +Although your research/production project might start simple, once you add things like GPU AND TPU training, + 16-bit precision, etc, you end up spending more time engineering than researching. + Lightning automates AND rigorously tests those parts for you. + +Overall, Lightning guarantees rigorously tested, correct, modern best practices for the automated parts. + +Documentation +------------- +- https://pytorch-lightning.readthedocs.io/en/latest +- https://pytorch-lightning.readthedocs.io/en/stable +""" import logging as python_logging diff --git a/setup.cfg b/setup.cfg index 8759d159fd..2f1b55c189 100644 --- a/setup.cfg +++ b/setup.cfg @@ -38,7 +38,6 @@ ignore = [check-manifest] ignore = *.yml - tox.ini .github .github/* .circleci diff --git a/tests/collect_env_details.py b/tests/collect_env_details.py index aaf16a104e..ef34948f8e 100644 --- a/tests/collect_env_details.py +++ b/tests/collect_env_details.py @@ -69,13 +69,13 @@ def info_packages(): def nice_print(details, level=0): lines = [] for k in sorted(details): - key = f'{k}:' + key = f'* {k}:' if level == 0 else f'- {k}:' if isinstance(details[k], dict): lines += [level * LEVEL_OFFSET + key] lines += nice_print(details[k], level + 1) elif isinstance(details[k], (set, list, tuple)): lines += [level * LEVEL_OFFSET + key] - lines += [(level + 1) * LEVEL_OFFSET + v for v in details[k]] + lines += [(level + 1) * LEVEL_OFFSET + '- ' + v for v in details[k]] else: template = '{:%is} {}' % KEY_PADDING key_val = template.format(key, details[k]) @@ -85,9 +85,9 @@ def nice_print(details, level=0): def main(): details = { - "system": info_system(), - 'cuda': info_cuda(), - 'packages': info_packages(), + "System": info_system(), + 'CUDA': info_cuda(), + 'Packages': info_packages(), } lines = nice_print(details) text = os.linesep.join(lines)