From bc797fd37613f18ddf0fd5122776b4cdcc4922ae Mon Sep 17 00:00:00 2001 From: Ethan Harris Date: Mon, 21 Nov 2022 16:02:30 +0000 Subject: [PATCH] [App] Fix multi-node pytorch example CI (#15753) --- .github/checkgroup.yml | 2 +- .github/workflows/ci-app-examples.yml | 2 +- docs/source-app/levels/basic/hello_components/pt_multinode.py | 2 +- examples/app_multi_node/train_pytorch.py | 4 ++-- 4 files changed, 5 insertions(+), 5 deletions(-) diff --git a/.github/checkgroup.yml b/.github/checkgroup.yml index 923694c316..71c1d875ab 100644 --- a/.github/checkgroup.yml +++ b/.github/checkgroup.yml @@ -246,7 +246,7 @@ subprojects: - ".github/workflows/ci-app-examples.yml" - "src/lightning_app/**" - "tests/tests_app_examples/**" - - "examples/app_*" + - "examples/app_*/**" - "requirements/app/**" - "setup.py" - ".actions/**" diff --git a/.github/workflows/ci-app-examples.yml b/.github/workflows/ci-app-examples.yml index 88eadcfd92..9646efa27d 100644 --- a/.github/workflows/ci-app-examples.yml +++ b/.github/workflows/ci-app-examples.yml @@ -11,7 +11,7 @@ on: - ".github/workflows/ci-app-examples.yml" - "src/lightning_app/**" - "tests/tests_app_examples/**" - - "examples/app_*" + - "examples/app_*/**" - "requirements/app/**" - "setup.py" - ".actions/**" diff --git a/docs/source-app/levels/basic/hello_components/pt_multinode.py b/docs/source-app/levels/basic/hello_components/pt_multinode.py index 86bd7da10c..8b39c74cdc 100644 --- a/docs/source-app/levels/basic/hello_components/pt_multinode.py +++ b/docs/source-app/levels/basic/hello_components/pt_multinode.py @@ -22,7 +22,7 @@ def distributed_train(local_rank: int, main_address: str, main_port: int, num_no # 2. PREPARE DISTRIBUTED MODEL model = torch.nn.Linear(32, 2) device = torch.device(f"cuda:{local_rank}") if torch.cuda.is_available() else torch.device("cpu") - model = DistributedDataParallel(model, device_ids=[local_rank]).to(device) + model = DistributedDataParallel(model, device_ids=[local_rank] if torch.cuda.is_available() else None).to(device) # 3. SETUP LOSS AND OPTIMIZER criterion = torch.nn.MSELoss() diff --git a/examples/app_multi_node/train_pytorch.py b/examples/app_multi_node/train_pytorch.py index 9599bce5bb..cc9e84297c 100644 --- a/examples/app_multi_node/train_pytorch.py +++ b/examples/app_multi_node/train_pytorch.py @@ -23,7 +23,7 @@ def distributed_train(local_rank: int, main_address: str, main_port: int, num_no # 2. PREPARE DISTRIBUTED MODEL model = torch.nn.Linear(32, 2) device = torch.device(f"cuda:{local_rank}") if torch.cuda.is_available() else torch.device("cpu") - model = DistributedDataParallel(model, device_ids=[local_rank]).to(device) + model = DistributedDataParallel(model, device_ids=[local_rank] if torch.cuda.is_available() else None).to(device) # 3. SETUP LOSS AND OPTIMIZER criterion = torch.nn.MSELoss() @@ -55,7 +55,7 @@ class PyTorchDistributed(L.LightningWork): ) -# 32 GPUs: (8 nodes x 4 v 100) +# 8 GPUs: (2 nodes x 4 v 100) compute = L.CloudCompute("gpu-fast-multi") # 4xV100 component = MultiNode(PyTorchDistributed, num_nodes=2, cloud_compute=compute) app = L.LightningApp(component)