Skips DDP parameter sync (#4301)
* ddp no-sync * Update pytorch_lightning/trainer/training_loop.py Co-authored-by: ananthsub <ananth.subramaniam@gmail.com> * Update training_loop.py * factor __enter__ and __exit__ out to separate context manager * delete _updated_model_last_step Co-authored-by: justusschock <justusschock@pc125.lfb.rwth-aachen.de> Co-authored-by: Teddy Koker <teddy.koker@gmail.com> Co-authored-by: ananthsub <ananth.subramaniam@gmail.com> Co-authored-by: chaton <thomas@grid.ai> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com>
This commit is contained in:
parent
b459fd26ac
commit
bbd81dfd55
|
@ -12,7 +12,7 @@
|
||||||
# See the License for the specific language governing permissions and
|
# See the License for the specific language governing permissions and
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
|
|
||||||
import subprocess
|
from contextlib import contextmanager
|
||||||
from copy import copy, deepcopy
|
from copy import copy, deepcopy
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
@ -655,6 +655,7 @@ class TrainLoop:
|
||||||
# checks if backward or backward + optimizer step (via closure)
|
# checks if backward or backward + optimizer step (via closure)
|
||||||
accumulation_done = self._accumulated_batches_reached()
|
accumulation_done = self._accumulated_batches_reached()
|
||||||
is_final_batch = self._num_training_batches_reached()
|
is_final_batch = self._num_training_batches_reached()
|
||||||
|
should_accumulate = not (accumulation_done or is_final_batch)
|
||||||
|
|
||||||
# lightning module hook
|
# lightning module hook
|
||||||
splits = self.tbptt_split_batch(batch)
|
splits = self.tbptt_split_batch(batch)
|
||||||
|
@ -675,13 +676,17 @@ class TrainLoop:
|
||||||
model = self.trainer.get_model()
|
model = self.trainer.get_model()
|
||||||
model.toggle_optimizer(optimizer, opt_idx)
|
model.toggle_optimizer(optimizer, opt_idx)
|
||||||
|
|
||||||
if not (accumulation_done or is_final_batch):
|
if should_accumulate:
|
||||||
# For gradient accumulation
|
# For gradient accumulation
|
||||||
|
|
||||||
# -------------------
|
# -------------------
|
||||||
# calculate loss (train step + train step end)
|
# calculate loss (train step + train step end)
|
||||||
# -------------------
|
# -------------------
|
||||||
|
|
||||||
|
# perform dpp sync only when performing optimizer_step
|
||||||
|
with self.block_ddp_sync_behaviour():
|
||||||
self.training_step_and_backward(split_batch, batch_idx, opt_idx, optimizer, self.trainer.hiddens)
|
self.training_step_and_backward(split_batch, batch_idx, opt_idx, optimizer, self.trainer.hiddens)
|
||||||
|
|
||||||
batch_outputs = self._process_closure_result(
|
batch_outputs = self._process_closure_result(
|
||||||
batch_callback_metrics=batch_callback_metrics,
|
batch_callback_metrics=batch_callback_metrics,
|
||||||
batch_log_metrics=batch_log_metrics,
|
batch_log_metrics=batch_log_metrics,
|
||||||
|
@ -695,7 +700,6 @@ class TrainLoop:
|
||||||
# gradient update with accumulated gradients
|
# gradient update with accumulated gradients
|
||||||
|
|
||||||
else:
|
else:
|
||||||
|
|
||||||
if self.automatic_optimization:
|
if self.automatic_optimization:
|
||||||
|
|
||||||
def train_step_and_backward_closure():
|
def train_step_and_backward_closure():
|
||||||
|
@ -760,6 +764,13 @@ class TrainLoop:
|
||||||
)
|
)
|
||||||
return result
|
return result
|
||||||
|
|
||||||
|
@contextmanager
|
||||||
|
def block_ddp_sync_behaviour(self):
|
||||||
|
if isinstance(self.trainer.model, torch.nn.parallel.DistributedDataParallel):
|
||||||
|
yield from self.trainer.model.no_sync()
|
||||||
|
else:
|
||||||
|
yield
|
||||||
|
|
||||||
def _process_closure_result(
|
def _process_closure_result(
|
||||||
self, batch_callback_metrics: list, batch_log_metrics: list, batch_outputs: list, opt_idx: int
|
self, batch_callback_metrics: list, batch_log_metrics: list, batch_outputs: list, opt_idx: int
|
||||||
) -> list:
|
) -> list:
|
||||||
|
|
Loading…
Reference in New Issue