parent
8827bd3a3b
commit
bb7356bcaa
|
@ -9,7 +9,7 @@ Notice a few things.
|
||||||
|
|
||||||
1. It's the SAME code.
|
1. It's the SAME code.
|
||||||
2. The PyTorch code IS NOT abstracted - just organized.
|
2. The PyTorch code IS NOT abstracted - just organized.
|
||||||
3. All the other code that didn't go in the LightningModule has been automated for you by the trainer
|
3. All the other code that not in the LightningModule has been automated for you by the trainer
|
||||||
.. code-block:: python
|
.. code-block:: python
|
||||||
|
|
||||||
net = Net()
|
net = Net()
|
||||||
|
@ -101,7 +101,7 @@ Which you can train by doing:
|
||||||
|
|
||||||
trainer.fit(model)
|
trainer.fit(model)
|
||||||
|
|
||||||
---
|
----------
|
||||||
|
|
||||||
Training loop structure
|
Training loop structure
|
||||||
-----------------------
|
-----------------------
|
||||||
|
@ -181,7 +181,7 @@ don't run your test data by accident. Instead you have to explicitly call:
|
||||||
trainer = Trainer()
|
trainer = Trainer()
|
||||||
trainer.test(model)
|
trainer.test(model)
|
||||||
|
|
||||||
---
|
----------
|
||||||
|
|
||||||
Training_step_end method
|
Training_step_end method
|
||||||
------------------------
|
------------------------
|
||||||
|
@ -211,7 +211,7 @@ which allows you to operate on the pieces of the batch
|
||||||
# like calculate validation set accuracy or loss
|
# like calculate validation set accuracy or loss
|
||||||
training_epoch_end(val_outs)
|
training_epoch_end(val_outs)
|
||||||
|
|
||||||
---
|
----------
|
||||||
|
|
||||||
Remove cuda calls
|
Remove cuda calls
|
||||||
-----------------
|
-----------------
|
||||||
|
@ -230,7 +230,7 @@ When you init a new tensor in your code, just use type_as
|
||||||
z = sample_noise()
|
z = sample_noise()
|
||||||
z = z.type_as(x.type())
|
z = z.type_as(x.type())
|
||||||
|
|
||||||
---
|
----------
|
||||||
|
|
||||||
Data preparation
|
Data preparation
|
||||||
----------------
|
----------------
|
||||||
|
|
Loading…
Reference in New Issue