From b9cf1223b92c273b9c3d4e5b254a5995d2ca6ef5 Mon Sep 17 00:00:00 2001 From: Jirka Borovec Date: Thu, 4 Mar 2021 20:23:12 +0100 Subject: [PATCH] missing tests default_root_dir=tmpdir (#6314) * default_root_dir=tmpdir * miss --- tests/models/test_restore.py | 5 +- tests/models/test_sync_batchnorm.py | 18 +++--- tests/plugins/test_deepspeed_plugin.py | 60 +++++++++---------- tests/plugins/test_rpc_plugin.py | 4 +- .../test_trainer_steps_scalar_return.py | 12 ++-- .../trainer/logging_/test_logger_connector.py | 6 +- .../logging_/test_train_loop_logging_1_0.py | 6 +- tests/trainer/test_trainer.py | 6 +- tests/trainer/test_trainer_tricks.py | 14 ++++- 9 files changed, 72 insertions(+), 59 deletions(-) diff --git a/tests/models/test_restore.py b/tests/models/test_restore.py index 391c3ad4d2..f35fccc873 100644 --- a/tests/models/test_restore.py +++ b/tests/models/test_restore.py @@ -167,10 +167,7 @@ def test_callbacks_state_resume_from_checkpoint(tmpdir): def get_trainer_args(): checkpoint = ModelCheckpoint(dirpath=tmpdir, monitor="val_loss", save_last=True) trainer_args = dict( - default_root_dir=tmpdir, max_steps=1, logger=False, callbacks=[ - checkpoint, - callback_capture, - ] + default_root_dir=tmpdir, max_steps=1, logger=False, callbacks=[checkpoint, callback_capture] ) assert checkpoint.best_model_path == "" assert checkpoint.best_model_score is None diff --git a/tests/models/test_sync_batchnorm.py b/tests/models/test_sync_batchnorm.py index 8c239aa886..42d95d4f21 100644 --- a/tests/models/test_sync_batchnorm.py +++ b/tests/models/test_sync_batchnorm.py @@ -105,8 +105,16 @@ def test_sync_batchnorm_ddp(tmpdir): dm.setup(stage=None) model = SyncBNModule(gpu_count=2, bn_targets=bn_outputs) + ddp = DDPSpawnPlugin( + parallel_devices=[torch.device("cuda", 0), torch.device("cuda", 1)], + num_nodes=1, + sync_batchnorm=True, + cluster_environment=TorchElasticEnvironment(), + find_unused_parameters=True + ) trainer = Trainer( + default_root_dir=tmpdir, gpus=2, num_nodes=1, accelerator='ddp_spawn', @@ -115,15 +123,7 @@ def test_sync_batchnorm_ddp(tmpdir): sync_batchnorm=True, num_sanity_val_steps=0, replace_sampler_ddp=False, - plugins=[ - DDPSpawnPlugin( - parallel_devices=[torch.device("cuda", 0), torch.device("cuda", 1)], - num_nodes=1, - sync_batchnorm=True, - cluster_environment=TorchElasticEnvironment(), - find_unused_parameters=True - ) - ] + plugins=[ddp] ) trainer.fit(model, dm) diff --git a/tests/plugins/test_deepspeed_plugin.py b/tests/plugins/test_deepspeed_plugin.py index 0b78c5cc4f..cf5c23a824 100644 --- a/tests/plugins/test_deepspeed_plugin.py +++ b/tests/plugins/test_deepspeed_plugin.py @@ -133,7 +133,11 @@ def test_deepspeed_precision_choice(amp_backend, tmpdir): """ trainer = Trainer( - fast_dev_run=True, default_root_dir=tmpdir, plugins='deepspeed', amp_backend=amp_backend, precision=16 + fast_dev_run=True, + default_root_dir=tmpdir, + plugins='deepspeed', + amp_backend=amp_backend, + precision=16, ) assert isinstance(trainer.accelerator.training_type_plugin, DeepSpeedPlugin) @@ -178,13 +182,11 @@ def test_deepspeed_defaults(tmpdir): @RunIf(deepspeed=True) def test_invalid_deepspeed_defaults_no_precision(tmpdir): - """ - Test to ensure that using defaults, if precision is not set to 16, we throw an exception. - """ + """Test to ensure that using defaults, if precision is not set to 16, we throw an exception.""" model = BoringModel() trainer = Trainer( - fast_dev_run=True, default_root_dir=tmpdir, + fast_dev_run=True, plugins='deepspeed', ) with pytest.raises( @@ -195,9 +197,7 @@ def test_invalid_deepspeed_defaults_no_precision(tmpdir): @RunIf(min_gpus=1, deepspeed=True) def test_warn_deepspeed_override_backward(tmpdir): - """ - Test to ensure that if the backward hook in the LightningModule is overridden, we throw a warning. - """ + """Test to ensure that if the backward hook in the LightningModule is overridden, we throw a warning.""" class TestModel(BoringModel): @@ -205,17 +205,21 @@ def test_warn_deepspeed_override_backward(tmpdir): return loss.backward() model = TestModel() - trainer = Trainer(fast_dev_run=True, default_root_dir=tmpdir, plugins=DeepSpeedPlugin(), gpus=1, precision=16) + trainer = Trainer( + fast_dev_run=True, + default_root_dir=tmpdir, + plugins=DeepSpeedPlugin(), + gpus=1, + precision=16, + ) with pytest.warns(UserWarning, match='Overridden backward hook in the LightningModule will be ignored'): trainer.fit(model) @RunIf(min_gpus=1, deepspeed=True) def test_deepspeed_run_configure_optimizers(tmpdir): - """ - Test end to end that deepspeed works with defaults (without ZeRO as that requires compilation), - whilst using configure_optimizers for optimizers and schedulers. - """ + """Test end to end that deepspeed works with defaults (without ZeRO as that requires compilation), + whilst using configure_optimizers for optimizers and schedulers.""" class TestModel(BoringModel): @@ -234,7 +238,7 @@ def test_deepspeed_run_configure_optimizers(tmpdir): default_root_dir=tmpdir, gpus=1, fast_dev_run=True, - precision=16 + precision=16, ) trainer.fit(model) @@ -267,7 +271,7 @@ def test_deepspeed_config(tmpdir, deepspeed_zero_config): default_root_dir=tmpdir, gpus=1, fast_dev_run=True, - precision=16 + precision=16, ) trainer.fit(model) @@ -278,9 +282,7 @@ def test_deepspeed_config(tmpdir, deepspeed_zero_config): @RunIf(min_gpus=1, deepspeed=True) def test_deepspeed_custom_precision_params(tmpdir): - """ - Ensure if we modify the FP16 parameters via the DeepSpeedPlugin, the deepspeed config contains these changes. - """ + """Ensure if we modify the FP16 parameters via the DeepSpeedPlugin, the deepspeed config contains these changes.""" class TestModel(BoringModel): @@ -293,24 +295,15 @@ def test_deepspeed_custom_precision_params(tmpdir): raise SystemExit() model = TestModel() - trainer = Trainer( - plugins=[ - DeepSpeedPlugin( - loss_scale=10, initial_scale_power=10, loss_scale_window=10, hysteresis=10, min_loss_scale=10 - ) - ], - precision=16, - gpus=1 - ) + ds = DeepSpeedPlugin(loss_scale=10, initial_scale_power=10, loss_scale_window=10, hysteresis=10, min_loss_scale=10) + trainer = Trainer(default_root_dir=tmpdir, plugins=[ds], precision=16, gpus=1) with pytest.raises(SystemExit): trainer.fit(model) @RunIf(min_gpus=1, deepspeed=True) def test_deepspeed_assert_config_zero_offload_disabled(tmpdir, deepspeed_zero_config): - """ - Ensure if we use a config and turn off cpu_offload, that this is set to False within the config. - """ + """Ensure if we use a config and turn off cpu_offload, that this is set to False within the config.""" deepspeed_zero_config['zero_optimization']['cpu_offload'] = False @@ -321,7 +314,12 @@ def test_deepspeed_assert_config_zero_offload_disabled(tmpdir, deepspeed_zero_co raise SystemExit() model = TestModel() - trainer = Trainer(plugins=[DeepSpeedPlugin(config=deepspeed_zero_config)], precision=16, gpus=1) + trainer = Trainer( + plugins=[DeepSpeedPlugin(config=deepspeed_zero_config)], + precision=16, + gpus=1, + default_root_dir=tmpdir, + ) with pytest.raises(SystemExit): trainer.fit(model) diff --git a/tests/plugins/test_rpc_plugin.py b/tests/plugins/test_rpc_plugin.py index 4b0a0b13ae..02dde1903c 100644 --- a/tests/plugins/test_rpc_plugin.py +++ b/tests/plugins/test_rpc_plugin.py @@ -38,6 +38,7 @@ def test_rpc_choice(tmpdir, ddp_backend, gpus, num_processes): model = BoringModel() trainer = Trainer( + default_root_dir=str(tmpdir), fast_dev_run=True, gpus=gpus, num_processes=num_processes, @@ -76,7 +77,8 @@ def test_rpc_function_calls_ddp(tmpdir): max_epochs=max_epochs, gpus=2, distributed_backend='ddp', - plugins=[plugin] + plugins=[plugin], + default_root_dir=tmpdir, ) trainer.fit(model) diff --git a/tests/trainer/legacy_deprecate_flow_log/test_trainer_steps_scalar_return.py b/tests/trainer/legacy_deprecate_flow_log/test_trainer_steps_scalar_return.py index 0cbf7960aa..5836251f2c 100644 --- a/tests/trainer/legacy_deprecate_flow_log/test_trainer_steps_scalar_return.py +++ b/tests/trainer/legacy_deprecate_flow_log/test_trainer_steps_scalar_return.py @@ -75,7 +75,7 @@ def training_step_scalar_with_step_end(tmpdir): model.training_step_end = model.training_step_end__scalar model.val_dataloader = None - trainer = Trainer(fast_dev_run=True, weights_summary=None) + trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=True, weights_summary=None) trainer.fit(model) # make sure correct steps were called @@ -165,7 +165,11 @@ def test_train_step_epoch_end_scalar(tmpdir): model.training_epoch_end = model.training_epoch_end__scalar model.val_dataloader = None - trainer = Trainer(max_epochs=1, weights_summary=None) + trainer = Trainer( + default_root_dir=tmpdir, + max_epochs=1, + weights_summary=None, + ) trainer.fit(model) # make sure correct steps were called @@ -222,13 +226,13 @@ def test_dpp_reduce_mean_pbar(tmpdir): trainer = Trainer( max_epochs=1, - default_root_dir=os.getcwd(), + default_root_dir=tmpdir, limit_train_batches=10, limit_test_batches=2, limit_val_batches=2, accelerator=distributed_backend, gpus=2, - precision=32 + precision=32, ) trainer.fit(model) diff --git a/tests/trainer/logging_/test_logger_connector.py b/tests/trainer/logging_/test_logger_connector.py index 47ffa6649f..3db0a8eaa0 100644 --- a/tests/trainer/logging_/test_logger_connector.py +++ b/tests/trainer/logging_/test_logger_connector.py @@ -478,6 +478,7 @@ def test_auto_add_dataloader_idx(tmpdir, add_dataloader_idx): """ test that auto_add_dataloader_idx argument works """ class TestModel(BoringModel): + def val_dataloader(self): dl = super().val_dataloader() return [dl, dl] @@ -495,10 +496,7 @@ def test_auto_add_dataloader_idx(tmpdir, add_dataloader_idx): model = TestModel() model.validation_epoch_end = None - trainer = Trainer( - default_root_dir=tmpdir, - max_steps=5 - ) + trainer = Trainer(default_root_dir=tmpdir, max_steps=5) trainer.fit(model) logged = trainer.logged_metrics diff --git a/tests/trainer/logging_/test_train_loop_logging_1_0.py b/tests/trainer/logging_/test_train_loop_logging_1_0.py index dfd93e6fc2..f8672eb4ec 100644 --- a/tests/trainer/logging_/test_train_loop_logging_1_0.py +++ b/tests/trainer/logging_/test_train_loop_logging_1_0.py @@ -411,7 +411,7 @@ def test_different_batch_types_for_sizing(tmpdir): assert generated == expected -def test_validation_step_with_string_data_logging(): +def test_validation_step_with_string_data_logging(tmpdir): class TestModel(BoringModel): @@ -436,7 +436,7 @@ def test_validation_step_with_string_data_logging(): # model model = TestModel() trainer = Trainer( - default_root_dir=os.getcwd(), + default_root_dir=tmpdir, limit_train_batches=1, limit_val_batches=1, max_epochs=1, @@ -491,7 +491,7 @@ def test_nested_datasouce_batch(tmpdir): # model model = TestModel() trainer = Trainer( - default_root_dir=os.getcwd(), + default_root_dir=tmpdir, limit_train_batches=1, limit_val_batches=1, max_epochs=1, diff --git a/tests/trainer/test_trainer.py b/tests/trainer/test_trainer.py index 867afc5eab..81a007e290 100644 --- a/tests/trainer/test_trainer.py +++ b/tests/trainer/test_trainer.py @@ -472,7 +472,11 @@ def test_resume_from_checkpoint_epoch_restored(monkeypatch, tmpdir, tmpdir_serve state = pl_load(ckpt) # Resume training - new_trainer = Trainer(resume_from_checkpoint=ckpt, max_epochs=2) + new_trainer = Trainer( + default_root_dir=tmpdir, + resume_from_checkpoint=ckpt, + max_epochs=2, + ) new_trainer.fit(next_model) assert state["global_step"] + next_model.num_batches_seen == trainer.num_training_batches * trainer.max_epochs assert next_model.num_on_load_checkpoint_called == 1 diff --git a/tests/trainer/test_trainer_tricks.py b/tests/trainer/test_trainer_tricks.py index 927872faed..7206d225ab 100644 --- a/tests/trainer/test_trainer_tricks.py +++ b/tests/trainer/test_trainer_tricks.py @@ -34,7 +34,12 @@ def test_num_training_batches(tmpdir): """ # when we have fewer batches in the dataloader we should use those instead of the limit model = EvalModelTemplate() - trainer = Trainer(limit_val_batches=100, limit_train_batches=100, max_epochs=1) + trainer = Trainer( + limit_val_batches=100, + limit_train_batches=100, + max_epochs=1, + default_root_dir=tmpdir, + ) trainer.fit(model) assert len(model.train_dataloader()) == 10 @@ -45,7 +50,12 @@ def test_num_training_batches(tmpdir): # when we have more batches in the dataloader we should limit them model = EvalModelTemplate() - trainer = Trainer(limit_val_batches=7, limit_train_batches=7, max_epochs=1) + trainer = Trainer( + limit_val_batches=7, + limit_train_batches=7, + max_epochs=1, + default_root_dir=tmpdir, + ) trainer.fit(model) assert len(model.train_dataloader()) == 10