diff --git a/docs/source-pytorch/starter/introduction.rst b/docs/source-pytorch/starter/introduction.rst index 6f205dcd69..d1ffb8dbe0 100644 --- a/docs/source-pytorch/starter/introduction.rst +++ b/docs/source-pytorch/starter/introduction.rst @@ -204,7 +204,7 @@ Once you've trained the model you can export to onnx, torchscript and put it int encoder.eval() # embed 4 fake images! - fake_image_batch = Tensor(4, 28 * 28) + fake_image_batch = torch.rand(4, 28 * 28, device=autoencoder.device) embeddings = encoder(fake_image_batch) print("⚡" * 20, "\nPredictions (4 image embeddings):\n", embeddings, "\n", "⚡" * 20)