update test for resume_from_checkpoint on missing file (#7255)

This commit is contained in:
Adrian Wälchli 2021-05-04 11:16:34 +02:00 committed by GitHub
parent d413bab5ac
commit b780af51be
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 8 additions and 17 deletions

View File

@ -193,6 +193,9 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
- `LightningModule.from_datasets()` now accepts `IterableDataset` instances as training datasets. ([#7503](https://github.com/PyTorchLightning/pytorch-lightning/pull/7503))
- Changed `resume_from_checkpoint` warning to an error when the checkpoint file does not exist ([#7075](https://github.com/PyTorchLightning/pytorch-lightning/pull/7075))
### Deprecated

View File

@ -132,24 +132,12 @@ def test_model_properties_resume_from_checkpoint(tmpdir):
def test_try_resume_from_non_existing_checkpoint(tmpdir):
""" Test that trying to resume from non-existing `resume_from_checkpoint` fail without error."""
dm = ClassifDataModule()
model = ClassificationModel()
checkpoint_cb = ModelCheckpoint(dirpath=tmpdir, monitor="val_loss", save_last=True)
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
logger=False,
callbacks=[checkpoint_cb],
limit_train_batches=2,
limit_val_batches=2,
)
# Generate checkpoint `last.ckpt` with BoringModel
trainer.fit(model, datamodule=dm)
# `True` if resume/restore successfully else `False`
assert trainer.checkpoint_connector.restore(str(tmpdir / "last.ckpt"), trainer.on_gpu)
""" Test that trying to resume from non-existing `resume_from_checkpoint` fails with an error."""
model = BoringModel()
trainer = Trainer(resume_from_checkpoint=str(tmpdir / "non_existing.ckpt"))
with pytest.raises(FileNotFoundError, match="Aborting training"):
trainer.checkpoint_connector.restore(str(tmpdir / "last_non_existing.ckpt"), trainer.on_gpu)
trainer.fit(model)
class CaptureCallbacksBeforeTraining(Callback):