Merge branch 'master' of https://github.com/williamFalcon/pytorch-lightning
This commit is contained in:
commit
b64e94bae3
15
README.md
15
README.md
|
@ -379,8 +379,19 @@ Nope.
|
|||
Nope. Please use anaconda or miniconda.
|
||||
|
||||
**Which PyTorch versions do you support?**
|
||||
Lightning 0.4.2+ supports PyTorch 1.2.0.
|
||||
For PyTorch 1.1.0 install Lightning 0.4.0 with test-tube=0.6.7.6.
|
||||
##### PyTorch 1.1.0
|
||||
```bash
|
||||
# install pytorch 1.1.0 using the official instructions
|
||||
|
||||
# install test-tube 0.6.7.6 which supports 1.1.0
|
||||
pip install test-tube==0.6.7.6
|
||||
|
||||
# install latest Lightning version without upgrading deps
|
||||
pip install -U --no-deps pytorch-lightning
|
||||
```
|
||||
|
||||
##### PyTorch 1.2.0
|
||||
Install via pip as normal
|
||||
|
||||
## Bleeding edge
|
||||
If you can't wait for the next release, install the most up to date code with:
|
||||
|
|
|
@ -0,0 +1,179 @@
|
|||
"""
|
||||
To run this template just do:
|
||||
python gan.py
|
||||
|
||||
After a few epochs, launch tensorboard to see the images being generated at every batch.
|
||||
|
||||
tensorboard --logdir default
|
||||
"""
|
||||
from argparse import ArgumentParser
|
||||
import os
|
||||
import numpy as np
|
||||
|
||||
import torchvision
|
||||
import torchvision.transforms as transforms
|
||||
from torchvision.datasets import MNIST
|
||||
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torch
|
||||
|
||||
import pytorch_lightning as pl
|
||||
from test_tube import Experiment
|
||||
|
||||
|
||||
class Generator(nn.Module):
|
||||
def __init__(self, latent_dim, img_shape):
|
||||
super(Generator, self).__init__()
|
||||
self.img_shape = img_shape
|
||||
|
||||
def block(in_feat, out_feat, normalize=True):
|
||||
layers = [nn.Linear(in_feat, out_feat)]
|
||||
if normalize:
|
||||
layers.append(nn.BatchNorm1d(out_feat, 0.8))
|
||||
layers.append(nn.LeakyReLU(0.2, inplace=True))
|
||||
return layers
|
||||
|
||||
self.model = nn.Sequential(
|
||||
*block(latent_dim, 128, normalize=False),
|
||||
*block(128, 256),
|
||||
*block(256, 512),
|
||||
*block(512, 1024),
|
||||
nn.Linear(1024, int(np.prod(img_shape))),
|
||||
nn.Tanh()
|
||||
)
|
||||
|
||||
def forward(self, z):
|
||||
img = self.model(z)
|
||||
img = img.view(img.size(0), *self.img_shape)
|
||||
return img
|
||||
|
||||
|
||||
class Discriminator(nn.Module):
|
||||
def __init__(self, img_shape):
|
||||
super(Discriminator, self).__init__()
|
||||
|
||||
self.model = nn.Sequential(
|
||||
nn.Linear(int(np.prod(img_shape)), 512),
|
||||
nn.LeakyReLU(0.2, inplace=True),
|
||||
nn.Linear(512, 256),
|
||||
nn.LeakyReLU(0.2, inplace=True),
|
||||
nn.Linear(256, 1),
|
||||
nn.Sigmoid(),
|
||||
)
|
||||
|
||||
def forward(self, img):
|
||||
img_flat = img.view(img.size(0), -1)
|
||||
validity = self.model(img_flat)
|
||||
|
||||
return validity
|
||||
|
||||
|
||||
class GAN(pl.LightningModule):
|
||||
|
||||
def __init__(self, hparams):
|
||||
super(GAN, self).__init__()
|
||||
self.hparams = hparams
|
||||
|
||||
# networks
|
||||
mnist_shape = (1, 28, 28)
|
||||
self.generator = Generator(latent_dim=hparams.latent_dim, img_shape=mnist_shape)
|
||||
self.discriminator = Discriminator(img_shape=mnist_shape)
|
||||
|
||||
# cache for generated images
|
||||
self.generated_imgs = None
|
||||
|
||||
def forward(self, z):
|
||||
return self.generator(z)
|
||||
|
||||
def adversarial_loss(self, y_hat, y):
|
||||
return F.binary_cross_entropy(y_hat, y)
|
||||
|
||||
def training_step(self, batch, batch_nb, optimizer_i):
|
||||
imgs, _ = batch
|
||||
|
||||
# train generator
|
||||
if optimizer_i == 0:
|
||||
# sample noise
|
||||
z = torch.randn(imgs.shape[0], self.hparams.latent_dim)
|
||||
|
||||
# match gpu device (or keep as cpu)
|
||||
if self.on_gpu:
|
||||
z = z.cuda(imgs.device.index)
|
||||
|
||||
# generate images
|
||||
self.generated_imgs = self.forward(z)
|
||||
|
||||
# log sampled images
|
||||
sample_imgs = self.generated_imgs[:6]
|
||||
grid = torchvision.utils.make_grid(sample_imgs)
|
||||
self.experiment.add_image('generated_images', grid, 0)
|
||||
|
||||
# ground truth result (ie: all fake)
|
||||
valid = torch.ones(imgs.size(0), 1)
|
||||
|
||||
# adversarial loss is binary cross-entropy
|
||||
g_loss = self.adversarial_loss(self.discriminator(self.generated_imgs), valid)
|
||||
|
||||
return g_loss
|
||||
|
||||
# train discriminator
|
||||
if optimizer_i == 1:
|
||||
# Measure discriminator's ability to classify real from generated samples
|
||||
|
||||
# how well can it label as real?
|
||||
valid = torch.ones(imgs.size(0), 1)
|
||||
real_loss = self.adversarial_loss(self.discriminator(imgs), valid)
|
||||
|
||||
# how well can it label as fake?
|
||||
fake = torch.zeros(imgs.size(0), 1)
|
||||
fake_loss = self.adversarial_loss(self.discriminator(self.generated_imgs.detach()), fake)
|
||||
|
||||
# discriminator loss is the average of these
|
||||
d_loss = (real_loss + fake_loss) / 2
|
||||
|
||||
return d_loss
|
||||
|
||||
def configure_optimizers(self):
|
||||
lr = self.hparams.lr
|
||||
b1 = self.hparams.b1
|
||||
b2 = self.hparams.b2
|
||||
|
||||
opt_g = torch.optim.Adam(self.generator.parameters(), lr=lr, betas=(b1, b2))
|
||||
opt_d = torch.optim.Adam(self.discriminator.parameters(), lr=lr, betas=(b1, b2))
|
||||
return [opt_g, opt_d], []
|
||||
|
||||
@pl.data_loader
|
||||
def tng_dataloader(self):
|
||||
transform = transforms.Compose([transforms.ToTensor(),
|
||||
transforms.Normalize([0.5], [0.5])])
|
||||
dataset = MNIST(os.getcwd(), train=True, download=True, transform=transform)
|
||||
return DataLoader(dataset, batch_size=self.hparams.batch_size)
|
||||
|
||||
|
||||
def main(hparams):
|
||||
# save tensorboard logs
|
||||
exp = Experiment(save_dir=os.getcwd())
|
||||
|
||||
# init model
|
||||
model = GAN(hparams)
|
||||
|
||||
# fit trainer on CPU
|
||||
trainer = pl.Trainer(experiment=exp, max_nb_epochs=200)
|
||||
trainer.fit(model)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = ArgumentParser()
|
||||
parser.add_argument("--batch_size", type=int, default=64, help="size of the batches")
|
||||
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
|
||||
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
|
||||
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
|
||||
parser.add_argument("--latent_dim", type=int, default=100, help="dimensionality of the latent space")
|
||||
|
||||
hparams = parser.parse_args()
|
||||
|
||||
main(hparams)
|
||||
|
Loading…
Reference in New Issue