diff --git a/.github/workflows/ci-testing.yml b/.github/workflows/ci-testing.yml index 6491ef02ff..518980446e 100644 --- a/.github/workflows/ci-testing.yml +++ b/.github/workflows/ci-testing.yml @@ -28,7 +28,7 @@ jobs: requires: 'minimal' # Timeout: https://stackoverflow.com/a/59076067/4521646 - timeout-minutes: 30 + timeout-minutes: 15 steps: - uses: actions/checkout@v2 - name: Set up Python ${{ matrix.python-version }} diff --git a/CHANGELOG.md b/CHANGELOG.md index bfb0458ab8..9ce083b11c 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -34,7 +34,7 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/). ### Fixed -- +- Fixed loggers - flushing last logged metrics even before continue, e.g. `trainer.test()` results ([#1459](https://github.com/PyTorchLightning/pytorch-lightning/pull/1459)) - diff --git a/pytorch_lightning/loggers/base.py b/pytorch_lightning/loggers/base.py index dcaddadfac..be93c2ba0d 100644 --- a/pytorch_lightning/loggers/base.py +++ b/pytorch_lightning/loggers/base.py @@ -48,7 +48,7 @@ class LightningLoggerBase(ABC): `LightningLoggerBase.agg_and_log_metrics` method. """ self._rank = 0 - self._prev_step = -1 + self._prev_step: int = -1 self._metrics_to_agg: List[Dict[str, float]] = [] self._agg_key_funcs = agg_key_funcs if agg_key_funcs else {} self._agg_default_func = agg_default_func @@ -98,15 +98,15 @@ class LightningLoggerBase(ABC): return step, None # compute the metrics - agg_step, agg_mets = self._finalize_agg_metrics() + agg_step, agg_mets = self._reduce_agg_metrics() # as new step received reset accumulator self._metrics_to_agg = [metrics] self._prev_step = step return agg_step, agg_mets - def _finalize_agg_metrics(self): - """Aggregate accumulated metrics. This shall be called in close.""" + def _reduce_agg_metrics(self): + """Aggregate accumulated metrics.""" # compute the metrics if not self._metrics_to_agg: agg_mets = None @@ -116,6 +116,14 @@ class LightningLoggerBase(ABC): agg_mets = merge_dicts(self._metrics_to_agg, self._agg_key_funcs, self._agg_default_func) return self._prev_step, agg_mets + def _finalize_agg_metrics(self): + """This shall be called before save/close.""" + agg_step, metrics_to_log = self._reduce_agg_metrics() + self._metrics_to_agg = [] + + if metrics_to_log is not None: + self.log_metrics(metrics=metrics_to_log, step=agg_step) + def agg_and_log_metrics(self, metrics: Dict[str, float], step: Optional[int] = None): """Aggregates and records metrics. This method doesn't log the passed metrics instantaneously, but instead @@ -219,7 +227,7 @@ class LightningLoggerBase(ABC): def save(self) -> None: """Save log data.""" - pass + self._finalize_agg_metrics() def finalize(self, status: str) -> None: """Do any processing that is necessary to finalize an experiment. @@ -227,14 +235,11 @@ class LightningLoggerBase(ABC): Args: status: Status that the experiment finished with (e.g. success, failed, aborted) """ - pass + self.save() def close(self) -> None: """Do any cleanup that is necessary to close an experiment.""" - agg_step, metrics_to_log = self._finalize_agg_metrics() - - if metrics_to_log is not None: - self.log_metrics(metrics=metrics_to_log, step=agg_step) + self.save() @property def rank(self) -> int: @@ -292,7 +297,6 @@ class LoggerCollection(LightningLoggerBase): @LightningLoggerBase.rank.setter def rank(self, value: int) -> None: - self._rank = value for logger in self._logger_iterable: logger.rank = value diff --git a/pytorch_lightning/loggers/comet.py b/pytorch_lightning/loggers/comet.py index ee9d65a73c..82ef4c9259 100644 --- a/pytorch_lightning/loggers/comet.py +++ b/pytorch_lightning/loggers/comet.py @@ -36,10 +36,15 @@ class CometLogger(LightningLoggerBase): Log using `comet.ml `_. """ - def __init__(self, api_key: Optional[str] = None, save_dir: Optional[str] = None, - workspace: Optional[str] = None, project_name: Optional[str] = None, - rest_api_key: Optional[str] = None, experiment_name: Optional[str] = None, - experiment_key: Optional[str] = None, **kwargs): + def __init__(self, + api_key: Optional[str] = None, + save_dir: Optional[str] = None, + workspace: Optional[str] = None, + project_name: Optional[str] = None, + rest_api_key: Optional[str] = None, + experiment_name: Optional[str] = None, + experiment_key: Optional[str] = None, + **kwargs): r""" Requires either an API Key (online mode) or a local directory path (offline mode) @@ -118,6 +123,7 @@ class CometLogger(LightningLoggerBase): self.name = experiment_name except TypeError as e: log.exception("Failed to set experiment name for comet.ml logger") + self._kwargs = kwargs @property def experiment(self) -> CometBaseExperiment: @@ -197,7 +203,7 @@ class CometLogger(LightningLoggerBase): @property def name(self) -> str: - return self.experiment.project_name + return str(self.experiment.project_name) @name.setter def name(self, value: str) -> None: diff --git a/pytorch_lightning/loggers/mlflow.py b/pytorch_lightning/loggers/mlflow.py index 6006cab467..7472e298e6 100644 --- a/pytorch_lightning/loggers/mlflow.py +++ b/pytorch_lightning/loggers/mlflow.py @@ -23,6 +23,7 @@ Use the logger anywhere in you LightningModule as follows: self.logger.experiment.whatever_ml_flow_supports(...) """ +import os from argparse import Namespace from time import time from typing import Optional, Dict, Any, Union @@ -39,10 +40,14 @@ from pytorch_lightning.loggers.base import LightningLoggerBase, rank_zero_only class MLFlowLogger(LightningLoggerBase): - def __init__(self, experiment_name: str, tracking_uri: Optional[str] = None, - tags: Dict[str, Any] = None): - r""" + """MLFLow logger""" + def __init__(self, + experiment_name: str = 'default', + tracking_uri: Optional[str] = None, + tags: Optional[Dict[str, Any]] = None, + save_dir: Optional[str] = None): + r""" Logs using MLFlow Args: @@ -51,6 +56,8 @@ class MLFlowLogger(LightningLoggerBase): tags (dict): todo this param """ super().__init__() + if not tracking_uri and save_dir: + tracking_uri = f'file:{os.sep * 2}{save_dir}' self._mlflow_client = MlflowClient(tracking_uri) self.experiment_name = experiment_name self._run_id = None @@ -59,7 +66,6 @@ class MLFlowLogger(LightningLoggerBase): @property def experiment(self) -> MlflowClient: r""" - Actual mlflow object. To use mlflow features do the following. Example:: @@ -102,11 +108,9 @@ class MLFlowLogger(LightningLoggerBase): continue self.experiment.log_metric(self.run_id, k, v, timestamp_ms, step) - def save(self): - pass - @rank_zero_only def finalize(self, status: str = 'FINISHED') -> None: + super().finalize(status) if status == 'success': status = 'FINISHED' self.experiment.set_terminated(self.run_id, status) diff --git a/pytorch_lightning/loggers/neptune.py b/pytorch_lightning/loggers/neptune.py index a2d64ff4ed..aac9977bd5 100644 --- a/pytorch_lightning/loggers/neptune.py +++ b/pytorch_lightning/loggers/neptune.py @@ -29,13 +29,18 @@ class NeptuneLogger(LightningLoggerBase): To log experiment data in online mode, NeptuneLogger requries an API key: """ - def __init__(self, api_key: Optional[str] = None, project_name: Optional[str] = None, - close_after_fit: Optional[bool] = True, offline_mode: bool = False, + def __init__(self, + api_key: Optional[str] = None, + project_name: Optional[str] = None, + close_after_fit: Optional[bool] = True, + offline_mode: bool = True, experiment_name: Optional[str] = None, - upload_source_files: Optional[List[str]] = None, params: Optional[Dict[str, Any]] = None, - properties: Optional[Dict[str, Any]] = None, tags: Optional[List[str]] = None, **kwargs): + upload_source_files: Optional[List[str]] = None, + params: Optional[Dict[str, Any]] = None, + properties: Optional[Dict[str, Any]] = None, + tags: Optional[List[str]] = None, + **kwargs): r""" - Initialize a neptune.ai logger. .. note:: Requires either an API Key (online mode) or a local directory path (offline mode) @@ -135,8 +140,8 @@ class NeptuneLogger(LightningLoggerBase): "namespace/project_name" for example "tom/minst-classification". If None, the value of NEPTUNE_PROJECT environment variable will be taken. You need to create the project in https://neptune.ai first. - offline_mode: Optional default False. If offline_mode=True no logs will be send - to neptune. Usually used for debug purposes. + offline_mode: Optional default True. If offline_mode=True no logs will be send + to neptune. Usually used for debug and test purposes. close_after_fit: Optional default True. If close_after_fit=False the experiment will not be closed after training and additional metrics, images or artifacts can be logged. Also, remember to close the experiment explicitly @@ -243,6 +248,7 @@ class NeptuneLogger(LightningLoggerBase): @rank_zero_only def finalize(self, status: str) -> None: + super().finalize(status) if self.close_after_fit: self.experiment.stop() diff --git a/pytorch_lightning/loggers/tensorboard.py b/pytorch_lightning/loggers/tensorboard.py index 7ae3ec85ed..187ab8826a 100644 --- a/pytorch_lightning/loggers/tensorboard.py +++ b/pytorch_lightning/loggers/tensorboard.py @@ -14,7 +14,6 @@ from pytorch_lightning import _logger as log class TensorBoardLogger(LightningLoggerBase): r""" - Log to local file system in TensorBoard format Implemented using :class:`torch.utils.tensorboard.SummaryWriter`. Logs are saved to @@ -40,10 +39,11 @@ class TensorBoardLogger(LightningLoggerBase): """ NAME_CSV_TAGS = 'meta_tags.csv' - def __init__( - self, save_dir: str, name: Optional[str] = "default", - version: Optional[Union[int, str]] = None, **kwargs - ): + def __init__(self, + save_dir: str, + name: Optional[str] = "default", + version: Optional[Union[int, str]] = None, + **kwargs): super().__init__() self.save_dir = save_dir self._name = name @@ -51,7 +51,7 @@ class TensorBoardLogger(LightningLoggerBase): self._experiment = None self.tags = {} - self.kwargs = kwargs + self._kwargs = kwargs @property def root_dir(self) -> str: @@ -92,7 +92,7 @@ class TensorBoardLogger(LightningLoggerBase): return self._experiment os.makedirs(self.root_dir, exist_ok=True) - self._experiment = SummaryWriter(log_dir=self.log_dir, **self.kwargs) + self._experiment = SummaryWriter(log_dir=self.log_dir, **self._kwargs) return self._experiment @rank_zero_only @@ -127,6 +127,7 @@ class TensorBoardLogger(LightningLoggerBase): @rank_zero_only def save(self) -> None: + super().save() try: self.experiment.flush() except AttributeError: diff --git a/pytorch_lightning/loggers/test_tube.py b/pytorch_lightning/loggers/test_tube.py index 4394c84b97..dac8490cbe 100644 --- a/pytorch_lightning/loggers/test_tube.py +++ b/pytorch_lightning/loggers/test_tube.py @@ -18,10 +18,13 @@ class TestTubeLogger(LightningLoggerBase): __test__ = False - def __init__( - self, save_dir: str, name: str = "default", description: Optional[str] = None, - debug: bool = False, version: Optional[int] = None, create_git_tag: bool = False - ): + def __init__(self, + save_dir: str, + name: str = "default", + description: Optional[str] = None, + debug: bool = False, + version: Optional[int] = None, + create_git_tag: bool = False): r""" Example @@ -105,12 +108,14 @@ class TestTubeLogger(LightningLoggerBase): @rank_zero_only def save(self) -> None: + super().save() # TODO: HACK figure out where this is being set to true self.experiment.debug = self.debug self.experiment.save() @rank_zero_only def finalize(self, status: str) -> None: + super().finalize(status) # TODO: HACK figure out where this is being set to true self.experiment.debug = self.debug self.save() @@ -118,6 +123,7 @@ class TestTubeLogger(LightningLoggerBase): @rank_zero_only def close(self) -> None: + super().save() # TODO: HACK figure out where this is being set to true self.experiment.debug = self.debug if not self.debug: diff --git a/pytorch_lightning/loggers/trains.py b/pytorch_lightning/loggers/trains.py index 3f890bba27..721d825927 100644 --- a/pytorch_lightning/loggers/trains.py +++ b/pytorch_lightning/loggers/trains.py @@ -295,11 +295,9 @@ class TrainsLogger(LightningLoggerBase): delete_after_upload=delete_after_upload ) - def save(self) -> None: - pass - @rank_zero_only def finalize(self, status: str = None) -> None: + # super().finalize(status) if self.bypass_mode() or not self._trains: return diff --git a/pytorch_lightning/loggers/wandb.py b/pytorch_lightning/loggers/wandb.py index 8cabfae52e..3b21fc9f27 100644 --- a/pytorch_lightning/loggers/wandb.py +++ b/pytorch_lightning/loggers/wandb.py @@ -46,11 +46,18 @@ class WandbLogger(LightningLoggerBase): trainer = Trainer(logger=wandb_logger) """ - def __init__(self, name: Optional[str] = None, save_dir: Optional[str] = None, - offline: bool = False, id: Optional[str] = None, anonymous: bool = False, - version: Optional[str] = None, project: Optional[str] = None, - tags: Optional[List[str]] = None, log_model: bool = False, - experiment=None, entity=None): + def __init__(self, + name: Optional[str] = None, + save_dir: Optional[str] = None, + offline: bool = False, + id: Optional[str] = None, + anonymous: bool = False, + version: Optional[str] = None, + project: Optional[str] = None, + tags: Optional[List[str]] = None, + log_model: bool = False, + experiment=None, + entity=None): super().__init__() self._name = name self._save_dir = save_dir diff --git a/pytorch_lightning/trainer/evaluation_loop.py b/pytorch_lightning/trainer/evaluation_loop.py index 19587509b1..a203b8a207 100644 --- a/pytorch_lightning/trainer/evaluation_loop.py +++ b/pytorch_lightning/trainer/evaluation_loop.py @@ -370,14 +370,13 @@ class TrainerEvaluationLoopMixin(ABC): # run evaluation eval_results = self._evaluate(self.model, dataloaders, max_batches, test_mode) - _, prog_bar_metrics, log_metrics, callback_metrics, _ = self.process_output( - eval_results) + _, prog_bar_metrics, log_metrics, callback_metrics, _ = self.process_output(eval_results) # add metrics to prog bar self.add_tqdm_metrics(prog_bar_metrics) # log results of test - if test_mode and self.proc_rank == 0 and len(callback_metrics) > 0: + if test_mode and self.proc_rank == 0: print('-' * 80) print('TEST RESULTS') pprint(callback_metrics) diff --git a/pytorch_lightning/trainer/trainer.py b/pytorch_lightning/trainer/trainer.py index 46b4fc48e6..706d727201 100644 --- a/pytorch_lightning/trainer/trainer.py +++ b/pytorch_lightning/trainer/trainer.py @@ -293,8 +293,7 @@ class Trainer( # benchmarking self.benchmark = benchmark - if benchmark: - torch.backends.cudnn.benchmark = True + torch.backends.cudnn.benchmark = self.benchmark # Transfer params self.num_nodes = num_nodes diff --git a/tests/base/mixins.py b/tests/base/mixins.py index afffd3768c..fcfd93a8a4 100644 --- a/tests/base/mixins.py +++ b/tests/base/mixins.py @@ -89,8 +89,8 @@ class LightValidationMixin(LightValidationStepMixin): val_loss_mean /= len(outputs) val_acc_mean /= len(outputs) - tqdm_dict = {'val_loss': val_loss_mean.item(), 'val_acc': val_acc_mean.item()} - results = {'progress_bar': tqdm_dict, 'log': tqdm_dict} + metrics_dict = {'val_loss': val_loss_mean.item(), 'val_acc': val_acc_mean.item()} + results = {'progress_bar': metrics_dict, 'log': metrics_dict} return results @@ -355,8 +355,8 @@ class LightTestMixin(LightTestStepMixin): test_loss_mean /= len(outputs) test_acc_mean /= len(outputs) - tqdm_dict = {'test_loss': test_loss_mean.item(), 'test_acc': test_acc_mean.item()} - result = {'progress_bar': tqdm_dict} + metrics_dict = {'test_loss': test_loss_mean.item(), 'test_acc': test_acc_mean.item()} + result = {'progress_bar': metrics_dict, 'log': metrics_dict} return result diff --git a/tests/loggers/test_all.py b/tests/loggers/test_all.py new file mode 100644 index 0000000000..0065b358e9 --- /dev/null +++ b/tests/loggers/test_all.py @@ -0,0 +1,95 @@ +import inspect +import pickle + +import pytest + +import tests.base.utils as tutils +from pytorch_lightning import Trainer +from pytorch_lightning.loggers import ( + TensorBoardLogger, MLFlowLogger, NeptuneLogger, TestTubeLogger, CometLogger) +from tests.base import LightningTestModel + + +@pytest.mark.parametrize("logger_class", [ + TensorBoardLogger, + CometLogger, + MLFlowLogger, + NeptuneLogger, + TestTubeLogger, + # TrainsLogger, # TODO: add this one + # WandbLogger, # TODO: add this one +]) +def test_loggers_fit_test(tmpdir, monkeypatch, logger_class): + """Verify that basic functionality of all loggers.""" + tutils.reset_seed() + + # prevent comet logger from trying to print at exit, since + # pytest's stdout/stderr redirection breaks it + import atexit + monkeypatch.setattr(atexit, 'register', lambda _: None) + + hparams = tutils.get_default_hparams() + model = LightningTestModel(hparams) + + class StoreHistoryLogger(logger_class): + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + self.history = [] + + def log_metrics(self, metrics, step): + super().log_metrics(metrics, step) + self.history.append((step, metrics)) + + if 'save_dir' in inspect.getfullargspec(logger_class).args: + logger = StoreHistoryLogger(save_dir=str(tmpdir)) + else: + logger = StoreHistoryLogger() + + trainer = Trainer( + max_epochs=1, + logger=logger, + train_percent_check=0.2, + val_percent_check=0.5, + fast_dev_run=True, + ) + trainer.fit(model) + + trainer.test() + + log_metric_names = [(s, sorted(m.keys())) for s, m in logger.history] + assert log_metric_names == [(0, ['val_acc', 'val_loss']), + (0, ['train_some_val']), + (1, ['test_acc', 'test_loss'])] + + +@pytest.mark.parametrize("logger_class", [ + TensorBoardLogger, + CometLogger, + MLFlowLogger, + NeptuneLogger, + TestTubeLogger, + # TrainsLogger, # TODO: add this one + # WandbLogger, # TODO: add this one +]) +def test_loggers_pickle(tmpdir, monkeypatch, logger_class): + """Verify that pickling trainer with logger works.""" + tutils.reset_seed() + + # prevent comet logger from trying to print at exit, since + # pytest's stdout/stderr redirection breaks it + import atexit + monkeypatch.setattr(atexit, 'register', lambda _: None) + + if 'save_dir' in inspect.getfullargspec(logger_class).args: + logger = logger_class(save_dir=str(tmpdir)) + else: + logger = logger_class() + + trainer = Trainer( + max_epochs=1, + logger=logger + ) + pkl_bytes = pickle.dumps(trainer) + + trainer2 = pickle.loads(pkl_bytes) + trainer2.logger.log_metrics({'acc': 1.0}) diff --git a/tests/loggers/test_base.py b/tests/loggers/test_base.py index 84297ddda2..8703241200 100644 --- a/tests/loggers/test_base.py +++ b/tests/loggers/test_base.py @@ -1,5 +1,4 @@ import pickle -from collections import OrderedDict from unittest.mock import MagicMock import numpy as np @@ -59,18 +58,6 @@ class CustomLogger(LightningLoggerBase): return "1" -class StoreHistoryLogger(CustomLogger): - def __init__(self): - super().__init__() - self.history = {} - - @rank_zero_only - def log_metrics(self, metrics, step): - if step not in self.history: - self.history[step] = {} - self.history[step].update(metrics) - - def test_custom_logger(tmpdir): hparams = tutils.get_default_hparams() model = LightningTestModel(hparams) @@ -175,6 +162,18 @@ def test_adding_step_key(tmpdir): def test_with_accumulate_grad_batches(): """Checks if the logging is performed once for `accumulate_grad_batches` steps.""" + + class StoreHistoryLogger(CustomLogger): + def __init__(self): + super().__init__() + self.history = {} + + @rank_zero_only + def log_metrics(self, metrics, step): + if step not in self.history: + self.history[step] = {} + self.history[step].update(metrics) + logger = StoreHistoryLogger() np.random.seed(42) diff --git a/tests/loggers/test_comet.py b/tests/loggers/test_comet.py index ff4a408df5..aeab10cd0f 100644 --- a/tests/loggers/test_comet.py +++ b/tests/loggers/test_comet.py @@ -1,51 +1,9 @@ -import os -import pickle from unittest.mock import patch import pytest -import torch -import tests.base.utils as tutils -from pytorch_lightning import Trainer from pytorch_lightning.loggers import CometLogger from pytorch_lightning.utilities.exceptions import MisconfigurationException -from tests.base import LightningTestModel - - -def test_comet_logger(tmpdir, monkeypatch): - """Verify that basic functionality of Comet.ml logger works.""" - - # prevent comet logger from trying to print at exit, since - # pytest's stdout/stderr redirection breaks it - import atexit - monkeypatch.setattr(atexit, 'register', lambda _: None) - - tutils.reset_seed() - - hparams = tutils.get_default_hparams() - model = LightningTestModel(hparams) - - comet_dir = os.path.join(tmpdir, 'cometruns') - - # We test CometLogger in offline mode with local saves - logger = CometLogger( - save_dir=comet_dir, - project_name='general', - workspace='dummy-test', - ) - - trainer_options = dict( - default_root_dir=tmpdir, - max_epochs=1, - train_percent_check=0.05, - logger=logger - ) - - trainer = Trainer(**trainer_options) - result = trainer.fit(model) - trainer.logger.log_metrics({'acc': torch.ones(1)}) - - assert result == 1, 'Training failed' def test_comet_logger_online(): @@ -120,37 +78,3 @@ def test_comet_logger_online(): ) api.assert_called_once_with('rest') - - -def test_comet_pickle(tmpdir, monkeypatch): - """Verify that pickling trainer with comet logger works.""" - - # prevent comet logger from trying to print at exit, since - # pytest's stdout/stderr redirection breaks it - import atexit - monkeypatch.setattr(atexit, 'register', lambda _: None) - - tutils.reset_seed() - - # hparams = tutils.get_default_hparams() - # model = LightningTestModel(hparams) - - comet_dir = os.path.join(tmpdir, 'cometruns') - - # We test CometLogger in offline mode with local saves - logger = CometLogger( - save_dir=comet_dir, - project_name='general', - workspace='dummy-test', - ) - - trainer_options = dict( - default_root_dir=tmpdir, - max_epochs=1, - logger=logger - ) - - trainer = Trainer(**trainer_options) - pkl_bytes = pickle.dumps(trainer) - trainer2 = pickle.loads(pkl_bytes) - trainer2.logger.log_metrics({'acc': 1.0}) diff --git a/tests/loggers/test_mlflow.py b/tests/loggers/test_mlflow.py index a3ce9ae5d7..81ce25ca63 100644 --- a/tests/loggers/test_mlflow.py +++ b/tests/loggers/test_mlflow.py @@ -1,54 +1,9 @@ -import os -import pickle - -import tests.base.utils as tutils -from pytorch_lightning import Trainer from pytorch_lightning.loggers import MLFlowLogger -from tests.base import LightningTestModel -def test_mlflow_logger(tmpdir): +def test_mlflow_logger_exists(tmpdir): """Verify that basic functionality of mlflow logger works.""" - tutils.reset_seed() - - hparams = tutils.get_default_hparams() - model = LightningTestModel(hparams) - - mlflow_dir = os.path.join(tmpdir, 'mlruns') - logger = MLFlowLogger('test', tracking_uri=f'file:{os.sep * 2}{mlflow_dir}') - + logger = MLFlowLogger('test', save_dir=tmpdir) # Test already exists - logger2 = MLFlowLogger('test', tracking_uri=f'file:{os.sep * 2}{mlflow_dir}') - _ = logger2.run_id - - # Try logging string - logger.log_metrics({'acc': 'test'}) - - trainer_options = dict( - default_root_dir=tmpdir, - max_epochs=1, - train_percent_check=0.05, - logger=logger - ) - trainer = Trainer(**trainer_options) - result = trainer.fit(model) - - assert result == 1, 'Training failed' - - -def test_mlflow_pickle(tmpdir): - """Verify that pickling trainer with mlflow logger works.""" - tutils.reset_seed() - - mlflow_dir = os.path.join(tmpdir, 'mlruns') - logger = MLFlowLogger('test', tracking_uri=f'file:{os.sep * 2}{mlflow_dir}') - trainer_options = dict( - default_root_dir=tmpdir, - max_epochs=1, - logger=logger - ) - - trainer = Trainer(**trainer_options) - pkl_bytes = pickle.dumps(trainer) - trainer2 = pickle.loads(pkl_bytes) - trainer2.logger.log_metrics({'acc': 1.0}) + logger2 = MLFlowLogger('test', save_dir=tmpdir) + assert logger.run_id != logger2.run_id diff --git a/tests/loggers/test_neptune.py b/tests/loggers/test_neptune.py index 36fd72ab0d..09f531ab8c 100644 --- a/tests/loggers/test_neptune.py +++ b/tests/loggers/test_neptune.py @@ -1,4 +1,3 @@ -import pickle from unittest.mock import patch, MagicMock import torch @@ -9,29 +8,9 @@ from pytorch_lightning.loggers import NeptuneLogger from tests.base import LightningTestModel -def test_neptune_logger(tmpdir): - """Verify that basic functionality of neptune logger works.""" - tutils.reset_seed() - - hparams = tutils.get_default_hparams() - model = LightningTestModel(hparams) - logger = NeptuneLogger(offline_mode=True) - - trainer_options = dict( - default_root_dir=tmpdir, - max_epochs=1, - train_percent_check=0.05, - logger=logger - ) - trainer = Trainer(**trainer_options) - result = trainer.fit(model) - - assert result == 1, 'Training failed' - - @patch('pytorch_lightning.loggers.neptune.neptune') def test_neptune_online(neptune): - logger = NeptuneLogger(api_key='test', project_name='project') + logger = NeptuneLogger(api_key='test', offline_mode=False, project_name='project') neptune.init.assert_called_once_with(api_token='test', project_qualified_name='project') assert logger.name == neptune.create_experiment().name @@ -80,24 +59,6 @@ def test_neptune_additional_methods(neptune): neptune.create_experiment().append_tags.assert_called_once_with('two', 'tags') -def test_neptune_pickle(tmpdir): - """Verify that pickling trainer with neptune logger works.""" - tutils.reset_seed() - - logger = NeptuneLogger(offline_mode=True) - - trainer_options = dict( - default_root_dir=tmpdir, - max_epochs=1, - logger=logger - ) - - trainer = Trainer(**trainer_options) - pkl_bytes = pickle.dumps(trainer) - trainer2 = pickle.loads(pkl_bytes) - trainer2.logger.log_metrics({'acc': 1.0}) - - def test_neptune_leave_open_experiment_after_fit(tmpdir): """Verify that neptune experiment was closed after training""" tutils.reset_seed() @@ -121,6 +82,5 @@ def test_neptune_leave_open_experiment_after_fit(tmpdir): logger_close_after_fit = _run_training(NeptuneLogger(offline_mode=True)) assert logger_close_after_fit._experiment.stop.call_count == 1 - logger_open_after_fit = _run_training( - NeptuneLogger(offline_mode=True, close_after_fit=False)) + logger_open_after_fit = _run_training(NeptuneLogger(offline_mode=True, close_after_fit=False)) assert logger_open_after_fit._experiment.stop.call_count == 0 diff --git a/tests/loggers/test_tensorboard.py b/tests/loggers/test_tensorboard.py index b938be4d64..937a233c9a 100644 --- a/tests/loggers/test_tensorboard.py +++ b/tests/loggers/test_tensorboard.py @@ -1,43 +1,9 @@ -import pickle from argparse import Namespace import pytest import torch -import tests.base.utils as tutils -from pytorch_lightning import Trainer from pytorch_lightning.loggers import TensorBoardLogger -from tests.base import LightningTestModel - - -def test_tensorboard_logger(tmpdir): - """Verify that basic functionality of Tensorboard logger works.""" - - hparams = tutils.get_default_hparams() - model = LightningTestModel(hparams) - - logger = TensorBoardLogger(save_dir=tmpdir, name="tensorboard_logger_test") - - trainer_options = dict(max_epochs=1, train_percent_check=0.01, logger=logger) - - trainer = Trainer(**trainer_options) - result = trainer.fit(model) - - print("result finished") - assert result == 1, "Training failed" - - -def test_tensorboard_pickle(tmpdir): - """Verify that pickling trainer with Tensorboard logger works.""" - - logger = TensorBoardLogger(save_dir=tmpdir, name="tensorboard_pickle_test") - - trainer_options = dict(max_epochs=1, logger=logger) - - trainer = Trainer(**trainer_options) - pkl_bytes = pickle.dumps(trainer) - trainer2 = pickle.loads(pkl_bytes) - trainer2.logger.log_metrics({"acc": 1.0}) def test_tensorboard_automatic_versioning(tmpdir): @@ -79,13 +45,10 @@ def test_tensorboard_named_version(tmpdir): # in the "minimum requirements" test setup -def test_tensorboard_no_name(tmpdir): +@pytest.mark.parametrize("name", ['', None]) +def test_tensorboard_no_name(tmpdir, name): """Verify that None or empty name works""" - - logger = TensorBoardLogger(save_dir=tmpdir, name="") - assert logger.root_dir == tmpdir - - logger = TensorBoardLogger(save_dir=tmpdir, name=None) + logger = TensorBoardLogger(save_dir=tmpdir, name=name) assert logger.root_dir == tmpdir diff --git a/tests/loggers/test_test_tube.py b/tests/loggers/test_test_tube.py deleted file mode 100644 index a0eb36ba52..0000000000 --- a/tests/loggers/test_test_tube.py +++ /dev/null @@ -1,51 +0,0 @@ -import pickle - -import tests.base.utils as tutils -from pytorch_lightning import Trainer -from tests.base import LightningTestModel - - -def test_testtube_logger(tmpdir): - """Verify that basic functionality of test tube logger works.""" - tutils.reset_seed() - hparams = tutils.get_default_hparams() - model = LightningTestModel(hparams) - - logger = tutils.get_default_testtube_logger(tmpdir, False) - - assert logger.name == 'lightning_logs' - - trainer_options = dict( - default_root_dir=tmpdir, - max_epochs=1, - train_percent_check=0.05, - logger=logger - ) - - trainer = Trainer(**trainer_options) - result = trainer.fit(model) - - assert result == 1, 'Training failed' - - -def test_testtube_pickle(tmpdir): - """Verify that pickling a trainer containing a test tube logger works.""" - tutils.reset_seed() - - hparams = tutils.get_default_hparams() - - logger = tutils.get_default_testtube_logger(tmpdir, False) - logger.log_hyperparams(hparams) - logger.save() - - trainer_options = dict( - default_root_dir=tmpdir, - max_epochs=1, - train_percent_check=0.05, - logger=logger - ) - - trainer = Trainer(**trainer_options) - pkl_bytes = pickle.dumps(trainer) - trainer2 = pickle.loads(pkl_bytes) - trainer2.logger.log_metrics({'acc': 1.0}) diff --git a/tests/loggers/test_wandb.py b/tests/loggers/test_wandb.py index 23cdb6fb31..87240ac3ed 100644 --- a/tests/loggers/test_wandb.py +++ b/tests/loggers/test_wandb.py @@ -2,8 +2,6 @@ import os import pickle from unittest.mock import patch -import pytest - import tests.base.utils as tutils from pytorch_lightning import Trainer from pytorch_lightning.loggers import WandbLogger @@ -37,7 +35,9 @@ def test_wandb_logger(wandb): @patch('pytorch_lightning.loggers.wandb.wandb') def test_wandb_pickle(wandb): """Verify that pickling trainer with wandb logger works. - Wandb doesn't work well with pytest so we have to mock it out here.""" + + Wandb doesn't work well with pytest so we have to mock it out here. + """ tutils.reset_seed() class Experiment: