ref: part 8 of #3733 (#3806)

This commit is contained in:
William Falcon 2020-10-02 18:46:18 -04:00 committed by GitHub
parent 9942f3ebdf
commit afa43837a4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 127 additions and 4 deletions

View File

@ -21,9 +21,17 @@ from typing import Optional
import numpy as np
import torch
import torch.distributed as torch_distrib
import torch.distributed as dist
from pytorch_lightning.utilities.distributed import find_free_network_port
from pytorch_lightning.accelerators.ddp_base_backend import DDPBase
from pytorch_lightning.accelerators.base_backend import Accelerator
from pytorch_lightning import _logger as log
from pytorch_lightning.utilities import AMPType
from pytorch_lightning.utilities.distributed import rank_zero_only
from pytorch_lightning.utilities.seed import seed_everything
from pytorch_lightning.distributed.dist import LightningDistributed
try:
from hydra.utils import to_absolute_path, get_original_cwd
@ -34,13 +42,14 @@ else:
HYDRA_AVAILABLE = True
class DDPBackend(DDPBase):
class DDPBackend(Accelerator):
def __init__(self, trainer, mode: str = 'ddp'):
super().__init__(trainer)
self.task_idx = None
self._has_spawned_children = False
self.mode = mode
self.dist = LightningDistributed()
def setup(self, model):
if self.mode == 'ddp':
@ -130,11 +139,11 @@ class DDPBackend(DDPBase):
def train(self):
model = self.trainer.model
if self.mode == 'ddp':
results = self.ddp_train_tmp(process_idx=self.task_idx, mp_queue=None, model=model, is_master=True)
results = self.ddp_train(process_idx=self.task_idx, model=model, is_master=True)
del os.environ['WORLD_SIZE']
return results
else:
self.ddp_train_tmp(process_idx=self.task_idx, mp_queue=None, model=model)
self.ddp_train(process_idx=self.task_idx, model=model)
def _check_can_spawn_children(self):
if self._has_spawned_children:
@ -168,3 +177,117 @@ class DDPBackend(DDPBase):
def get_device_ids(self):
device_ids = [self.trainer.root_gpu]
return device_ids
def training_step(self, args):
if self.trainer.amp_backend == AMPType.NATIVE:
with torch.cuda.amp.autocast():
output = self.trainer.model(*args)
else:
output = self.trainer.model(*args)
return output
def validation_step(self, args):
output = self.training_step(args)
return output
def test_step(self, args):
output = self.training_step(args)
return output
def barrier(self, name: str = None):
if torch_distrib.is_initialized():
torch_distrib.barrier()
def early_stopping_should_stop(self, pl_module):
stop = torch.tensor(int(self.trainer.should_stop), device=pl_module.device)
dist.all_reduce(stop, op=dist.reduce_op.SUM)
dist.barrier()
should_stop = stop == self.trainer.world_size
return should_stop
def broadcast(self, obj, src=0):
return self.dist.broadcast(obj)
def ddp_train(self, process_idx, model, is_master=False, proc_offset=0):
"""
Entry point for ddp
Args:
process_idx:
mp_queue: multiprocessing queue
model:
Returns:
"""
seed = os.environ.get("PL_GLOBAL_SEED")
if seed is not None:
seed_everything(int(seed))
# offset the process id if requested
process_idx = process_idx + proc_offset
# show progressbar only on progress_rank 0
if (self.trainer.node_rank != 0 or process_idx != 0) and self.trainer.progress_bar_callback is not None:
self.trainer.progress_bar_callback.disable()
# determine which process we are and world size
self.set_world_ranks(process_idx)
# set warning rank
rank_zero_only.rank = self.trainer.global_rank
# set up server using proc 0's ip address
# try to init for 20 times at max in case ports are taken
# where to store ip_table
model.trainer = self.trainer
model.init_ddp_connection(
self.trainer.global_rank,
self.trainer.world_size,
self.trainer.is_slurm_managing_tasks
)
# call setup after the ddp process has connected
self.trainer.call_setup_hook(model)
# on world_size=0 let everyone know training is starting
if self.trainer.is_global_zero and not torch.distributed.is_initialized():
log.info('-' * 100)
log.info(f'distributed_backend={self.trainer.distributed_backend}')
log.info(f'All DDP processes registered. Starting ddp with {self.trainer.world_size} processes')
log.info('-' * 100)
# call sync_bn before .cuda(), configure_apex and configure_ddp
if self.trainer.sync_batchnorm:
model = model.configure_sync_batchnorm(model)
# move the model to the correct device
self.model_to_device(model, process_idx, is_master)
# CHOOSE OPTIMIZER
# allow for lr schedulers as well
self.setup_optimizers(model)
# set model properties before going into wrapper
self.trainer.model_connector.copy_trainer_model_properties(model)
# 16-bit
model = self.trainer.precision_connector.connect(model)
# device ids change depending on the DDP setup
device_ids = self.get_device_ids()
# allow user to configure ddp
model = model.configure_ddp(model, device_ids)
# set up training routine
self.trainer.train_loop.setup_training(model)
# train or test
results = self.train_or_test()
# clean up memory
torch.cuda.empty_cache()
if self.trainer.global_rank == 0:
return results