clean avail. imports & enums (#5256)
* clean avail. imports * enums * fix missing
This commit is contained in:
parent
7a615b5651
commit
ae9956f997
|
@ -12,14 +12,8 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""General utilities"""
|
||||
import importlib
|
||||
import platform
|
||||
from distutils.version import LooseVersion
|
||||
from enum import Enum
|
||||
from typing import Union
|
||||
|
||||
import numpy
|
||||
import torch
|
||||
|
||||
from pytorch_lightning.utilities.apply_func import move_data_to_device # noqa: F401
|
||||
from pytorch_lightning.utilities.distributed import ( # noqa: F401
|
||||
|
@ -28,106 +22,33 @@ from pytorch_lightning.utilities.distributed import ( # noqa: F401
|
|||
rank_zero_only,
|
||||
rank_zero_warn,
|
||||
)
|
||||
from pytorch_lightning.utilities.enums import ( # noqa: F401
|
||||
LightningEnum,
|
||||
AMPType,
|
||||
DistributedType,
|
||||
DeviceType,
|
||||
)
|
||||
from pytorch_lightning.utilities.imports import ( # noqa: F401
|
||||
_APEX_AVAILABLE,
|
||||
_NATIVE_AMP_AVAILABLE,
|
||||
_XLA_AVAILABLE,
|
||||
_OMEGACONF_AVAILABLE,
|
||||
_HYDRA_AVAILABLE,
|
||||
_HOROVOD_AVAILABLE,
|
||||
_TORCHTEXT_AVAILABLE,
|
||||
_FAIRSCALE_AVAILABLE,
|
||||
_RPC_AVAILABLE,
|
||||
_GROUP_AVAILABLE,
|
||||
_FAIRSCALE_PIPE_AVAILABLE,
|
||||
_BOLTS_AVAILABLE,
|
||||
_module_available,
|
||||
)
|
||||
from pytorch_lightning.utilities.parsing import AttributeDict, flatten_dict, is_picklable # noqa: F401
|
||||
from pytorch_lightning.utilities.xla_device import _XLA_AVAILABLE, XLADeviceUtils # noqa: F401
|
||||
from pytorch_lightning.utilities.xla_device import XLADeviceUtils # noqa: F401
|
||||
|
||||
|
||||
def _module_available(module_path: str) -> bool:
|
||||
"""Testing if given module is avalaible in your env
|
||||
|
||||
>>> _module_available('os')
|
||||
True
|
||||
>>> _module_available('bla.bla')
|
||||
False
|
||||
"""
|
||||
# todo: find a better way than try / except
|
||||
try:
|
||||
mods = module_path.split('.')
|
||||
assert mods, 'nothing given to test'
|
||||
# it has to be tested as per partets
|
||||
for i in range(len(mods)):
|
||||
module_path = '.'.join(mods[:i + 1])
|
||||
if importlib.util.find_spec(module_path) is None:
|
||||
return False
|
||||
return True
|
||||
except AttributeError:
|
||||
return False
|
||||
|
||||
|
||||
_APEX_AVAILABLE = _module_available("apex.amp")
|
||||
_NATIVE_AMP_AVAILABLE = _module_available("torch.cuda.amp") and hasattr(torch.cuda.amp, "autocast")
|
||||
_OMEGACONF_AVAILABLE = _module_available("omegaconf")
|
||||
_HYDRA_AVAILABLE = _module_available("hydra")
|
||||
_HOROVOD_AVAILABLE = _module_available("horovod.torch")
|
||||
|
||||
_TPU_AVAILABLE = XLADeviceUtils.tpu_device_exists()
|
||||
_FAIRSCALE_AVAILABLE = platform.system() != 'Windows' and _module_available('fairscale.nn.data_parallel')
|
||||
_RPC_AVAILABLE = platform.system() != 'Windows' and _module_available('torch.distributed.rpc')
|
||||
_GROUP_AVAILABLE = platform.system() != 'Windows' and _module_available('torch.distributed.group')
|
||||
_FAIRSCALE_PIPE_AVAILABLE = _FAIRSCALE_AVAILABLE and LooseVersion(torch.__version__) >= LooseVersion("1.6.0")
|
||||
_BOLTS_AVAILABLE = _module_available('pl_bolts')
|
||||
|
||||
FLOAT16_EPSILON = numpy.finfo(numpy.float16).eps
|
||||
FLOAT32_EPSILON = numpy.finfo(numpy.float32).eps
|
||||
FLOAT64_EPSILON = numpy.finfo(numpy.float64).eps
|
||||
|
||||
|
||||
class LightningEnum(str, Enum):
|
||||
""" Type of any enumerator with allowed comparison to string invariant to cases. """
|
||||
|
||||
@classmethod
|
||||
def from_str(cls, value: str) -> 'LightningEnum':
|
||||
statuses = [status for status in dir(cls) if not status.startswith('_')]
|
||||
for st in statuses:
|
||||
if st.lower() == value.lower():
|
||||
return getattr(cls, st)
|
||||
return None
|
||||
|
||||
def __eq__(self, other: Union[str, Enum]) -> bool:
|
||||
other = other.value if isinstance(other, Enum) else str(other)
|
||||
return self.value.lower() == other.lower()
|
||||
|
||||
|
||||
class AMPType(LightningEnum):
|
||||
"""Type of Automatic Mixed Precission used for training.
|
||||
|
||||
>>> # you can math the type with string
|
||||
>>> AMPType.APEX == 'apex'
|
||||
True
|
||||
"""
|
||||
APEX = 'apex'
|
||||
NATIVE = 'native'
|
||||
|
||||
|
||||
class DistributedType(LightningEnum):
|
||||
""" Define type of ditributed computing.
|
||||
|
||||
>>> # you can math the type with string
|
||||
>>> DistributedType.DDP == 'ddp'
|
||||
True
|
||||
>>> # which is case invariant
|
||||
>>> DistributedType.DDP2 == 'DDP2'
|
||||
True
|
||||
"""
|
||||
DP = 'dp'
|
||||
DDP = 'ddp'
|
||||
DDP2 = 'ddp2'
|
||||
DDP_SPAWN = 'ddp_spawn'
|
||||
HOROVOD = 'horovod'
|
||||
|
||||
|
||||
class DeviceType(LightningEnum):
|
||||
""" Define Device type byt its nature - acceleatrors.
|
||||
|
||||
>>> DeviceType.CPU == DeviceType.from_str('cpu')
|
||||
True
|
||||
>>> # you can math the type with string
|
||||
>>> DeviceType.GPU == 'GPU'
|
||||
True
|
||||
>>> # which is case invariant
|
||||
>>> DeviceType.TPU == 'tpu'
|
||||
True
|
||||
"""
|
||||
CPU = 'CPU'
|
||||
GPU = 'GPU'
|
||||
TPU = 'TPU'
|
||||
|
|
|
@ -12,7 +12,6 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import importlib
|
||||
from abc import ABC
|
||||
from collections.abc import Mapping, Sequence
|
||||
from copy import copy
|
||||
|
@ -20,8 +19,9 @@ from typing import Any, Callable, Union
|
|||
|
||||
import torch
|
||||
|
||||
TORCHTEXT_AVAILABLE = importlib.util.find_spec("torchtext") is not None
|
||||
if TORCHTEXT_AVAILABLE:
|
||||
from pytorch_lightning.utilities.imports import _TORCHTEXT_AVAILABLE
|
||||
|
||||
if _TORCHTEXT_AVAILABLE:
|
||||
from torchtext.data import Batch
|
||||
else:
|
||||
Batch = type(None)
|
||||
|
@ -109,7 +109,7 @@ def move_data_to_device(batch: Any, device: torch.device):
|
|||
|
||||
def batch_to(data):
|
||||
# try to move torchtext data first
|
||||
if TORCHTEXT_AVAILABLE and isinstance(data, Batch):
|
||||
if _TORCHTEXT_AVAILABLE and isinstance(data, Batch):
|
||||
|
||||
# Shallow copy because each Batch has a reference to Dataset which contains all examples
|
||||
device_data = copy(data)
|
||||
|
@ -123,5 +123,5 @@ def move_data_to_device(batch: Any, device: torch.device):
|
|||
kwargs = dict(non_blocking=True) if isinstance(data, torch.Tensor) else {}
|
||||
return data.to(device, **kwargs)
|
||||
|
||||
dtype = (TransferableDataType, Batch) if TORCHTEXT_AVAILABLE else TransferableDataType
|
||||
dtype = (TransferableDataType, Batch) if _TORCHTEXT_AVAILABLE else TransferableDataType
|
||||
return apply_to_collection(batch, dtype=dtype, function=batch_to)
|
||||
|
|
|
@ -0,0 +1,77 @@
|
|||
# Copyright The PyTorch Lightning team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Enumerated utilities"""
|
||||
from enum import Enum
|
||||
from typing import Union
|
||||
|
||||
|
||||
class LightningEnum(str, Enum):
|
||||
""" Type of any enumerator with allowed comparison to string invariant to cases. """
|
||||
|
||||
@classmethod
|
||||
def from_str(cls, value: str) -> 'LightningEnum':
|
||||
statuses = [status for status in dir(cls) if not status.startswith('_')]
|
||||
for st in statuses:
|
||||
if st.lower() == value.lower():
|
||||
return getattr(cls, st)
|
||||
return None
|
||||
|
||||
def __eq__(self, other: Union[str, Enum]) -> bool:
|
||||
other = other.value if isinstance(other, Enum) else str(other)
|
||||
return self.value.lower() == other.lower()
|
||||
|
||||
|
||||
class AMPType(LightningEnum):
|
||||
"""Type of Automatic Mixed Precission used for training.
|
||||
|
||||
>>> # you can math the type with string
|
||||
>>> AMPType.APEX == 'apex'
|
||||
True
|
||||
"""
|
||||
APEX = 'apex'
|
||||
NATIVE = 'native'
|
||||
|
||||
|
||||
class DistributedType(LightningEnum):
|
||||
""" Define type of ditributed computing.
|
||||
|
||||
>>> # you can math the type with string
|
||||
>>> DistributedType.DDP == 'ddp'
|
||||
True
|
||||
>>> # which is case invariant
|
||||
>>> DistributedType.DDP2 == 'DDP2'
|
||||
True
|
||||
"""
|
||||
DP = 'dp'
|
||||
DDP = 'ddp'
|
||||
DDP2 = 'ddp2'
|
||||
DDP_SPAWN = 'ddp_spawn'
|
||||
HOROVOD = 'horovod'
|
||||
|
||||
|
||||
class DeviceType(LightningEnum):
|
||||
""" Define Device type byt its nature - acceleatrors.
|
||||
|
||||
>>> DeviceType.CPU == DeviceType.from_str('cpu')
|
||||
True
|
||||
>>> # you can math the type with string
|
||||
>>> DeviceType.GPU == 'GPU'
|
||||
True
|
||||
>>> # which is case invariant
|
||||
>>> DeviceType.TPU == 'tpu'
|
||||
True
|
||||
"""
|
||||
CPU = 'CPU'
|
||||
GPU = 'GPU'
|
||||
TPU = 'TPU'
|
|
@ -0,0 +1,55 @@
|
|||
# Copyright The PyTorch Lightning team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""General utilities"""
|
||||
import importlib
|
||||
import platform
|
||||
from distutils.version import LooseVersion
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
def _module_available(module_path: str) -> bool:
|
||||
"""Testing if given module is avalaible in your env
|
||||
|
||||
>>> _module_available('os')
|
||||
True
|
||||
>>> _module_available('bla.bla')
|
||||
False
|
||||
"""
|
||||
# todo: find a better way than try / except
|
||||
try:
|
||||
mods = module_path.split('.')
|
||||
assert mods, 'nothing given to test'
|
||||
# it has to be tested as per partets
|
||||
for i in range(len(mods)):
|
||||
module_path = '.'.join(mods[:i + 1])
|
||||
if importlib.util.find_spec(module_path) is None:
|
||||
return False
|
||||
return True
|
||||
except AttributeError:
|
||||
return False
|
||||
|
||||
|
||||
_APEX_AVAILABLE = _module_available("apex.amp")
|
||||
_NATIVE_AMP_AVAILABLE = _module_available("torch.cuda.amp") and hasattr(torch.cuda.amp, "autocast")
|
||||
_OMEGACONF_AVAILABLE = _module_available("omegaconf")
|
||||
_HYDRA_AVAILABLE = _module_available("hydra")
|
||||
_HOROVOD_AVAILABLE = _module_available("horovod.torch")
|
||||
_TORCHTEXT_AVAILABLE = _module_available("torchtext")
|
||||
_XLA_AVAILABLE = _module_available("torch_xla")
|
||||
_FAIRSCALE_AVAILABLE = platform.system() != 'Windows' and _module_available('fairscale.nn.data_parallel')
|
||||
_RPC_AVAILABLE = platform.system() != 'Windows' and _module_available('torch.distributed.rpc')
|
||||
_GROUP_AVAILABLE = platform.system() != 'Windows' and _module_available('torch.distributed.group')
|
||||
_FAIRSCALE_PIPE_AVAILABLE = _FAIRSCALE_AVAILABLE and LooseVersion(torch.__version__) >= LooseVersion("1.6.0")
|
||||
_BOLTS_AVAILABLE = _module_available('pl_bolts')
|
|
@ -12,14 +12,13 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import functools
|
||||
import importlib
|
||||
import queue as q
|
||||
import traceback
|
||||
from multiprocessing import Process, Queue
|
||||
|
||||
import torch
|
||||
|
||||
_XLA_AVAILABLE = importlib.util.find_spec("torch_xla") is not None
|
||||
from pytorch_lightning.utilities.imports import _XLA_AVAILABLE
|
||||
|
||||
if _XLA_AVAILABLE:
|
||||
import torch_xla.core.xla_model as xm
|
||||
|
|
Loading…
Reference in New Issue