Apply isort to `pl_examples/` (#5291)
* Remove examples from isort ignore list
* Apply isort
(cherry picked from commit 0c7c9e8540
)
This commit is contained in:
parent
5a5078557a
commit
abc690d720
|
@ -17,15 +17,14 @@ from argparse import ArgumentParser
|
|||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch import nn
|
||||
from torch.utils.data import DataLoader
|
||||
from torch.utils.data import random_split
|
||||
from torch.utils.data import DataLoader, random_split
|
||||
|
||||
import pytorch_lightning as pl
|
||||
from pl_examples import _TORCHVISION_AVAILABLE, cli_lightning_logo
|
||||
|
||||
if _TORCHVISION_AVAILABLE:
|
||||
from torchvision.datasets.mnist import MNIST
|
||||
from torchvision import transforms
|
||||
from torchvision.datasets.mnist import MNIST
|
||||
else:
|
||||
from tests.base.datasets import MNIST
|
||||
|
||||
|
|
|
@ -22,8 +22,8 @@ import pytorch_lightning as pl
|
|||
from pl_examples import _DATASETS_PATH, _TORCHVISION_AVAILABLE, cli_lightning_logo
|
||||
|
||||
if _TORCHVISION_AVAILABLE:
|
||||
from torchvision.datasets.mnist import MNIST
|
||||
from torchvision import transforms
|
||||
from torchvision.datasets.mnist import MNIST
|
||||
else:
|
||||
from tests.base.datasets import MNIST
|
||||
|
||||
|
|
|
@ -20,16 +20,16 @@ to balance across your GPUs.
|
|||
To run:
|
||||
python conv_model_sequential_example.py --accelerator ddp --gpus 4 --max_epochs 1 --batch_size 256 --use_ddp_sequential
|
||||
"""
|
||||
import math
|
||||
from argparse import ArgumentParser
|
||||
import math
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torchvision
|
||||
|
||||
import pytorch_lightning as pl
|
||||
from pl_examples import cli_lightning_logo
|
||||
import pytorch_lightning as pl
|
||||
from pytorch_lightning import Trainer
|
||||
from pytorch_lightning.metrics.functional import accuracy
|
||||
from pytorch_lightning.plugins.ddp_sequential_plugin import DDPSequentialPlugin
|
||||
|
|
|
@ -13,9 +13,9 @@
|
|||
# limitations under the License.
|
||||
from abc import ABC
|
||||
from argparse import ArgumentParser
|
||||
from distutils.version import LooseVersion
|
||||
from random import shuffle
|
||||
from warnings import warn
|
||||
from distutils.version import LooseVersion
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
@ -26,16 +26,15 @@ import pytorch_lightning as pl
|
|||
from pl_examples import _TORCHVISION_AVAILABLE, _DALI_AVAILABLE, cli_lightning_logo
|
||||
|
||||
if _TORCHVISION_AVAILABLE:
|
||||
from torchvision.datasets.mnist import MNIST
|
||||
from torchvision import transforms
|
||||
from torchvision.datasets.mnist import MNIST
|
||||
else:
|
||||
from tests.base.datasets import MNIST
|
||||
|
||||
if _DALI_AVAILABLE:
|
||||
from nvidia.dali import ops
|
||||
from nvidia.dali import ops, __version__ as dali_version
|
||||
from nvidia.dali.pipeline import Pipeline
|
||||
from nvidia.dali.plugin.pytorch import DALIClassificationIterator
|
||||
from nvidia.dali import __version__ as dali_version
|
||||
|
||||
NEW_DALI_API = LooseVersion(dali_version) >= LooseVersion('0.28.0')
|
||||
if NEW_DALI_API:
|
||||
|
|
|
@ -18,9 +18,9 @@ from pprint import pprint
|
|||
import torch
|
||||
from torch.nn import functional as F
|
||||
|
||||
import pytorch_lightning as pl
|
||||
from pl_examples import cli_lightning_logo
|
||||
from pl_examples.basic_examples.mnist_datamodule import MNISTDataModule
|
||||
import pytorch_lightning as pl
|
||||
|
||||
|
||||
class LitClassifier(pl.LightningModule):
|
||||
|
|
|
@ -20,11 +20,12 @@
|
|||
# --------------------------------------------
|
||||
# --------------------------------------------
|
||||
import os
|
||||
|
||||
import torch
|
||||
from torch.utils.data import Dataset
|
||||
|
||||
from pl_examples import cli_lightning_logo
|
||||
from pytorch_lightning import Trainer, LightningModule
|
||||
from pytorch_lightning import LightningModule, Trainer
|
||||
|
||||
|
||||
class RandomDataset(Dataset):
|
||||
|
|
|
@ -38,22 +38,21 @@ import argparse
|
|||
from collections import OrderedDict
|
||||
from pathlib import Path
|
||||
from tempfile import TemporaryDirectory
|
||||
from typing import Optional, Generator, Union
|
||||
from typing import Generator, Optional, Union
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch import optim
|
||||
from torch.nn import Module
|
||||
import torch.nn.functional as F
|
||||
from torch.optim.lr_scheduler import MultiStepLR
|
||||
from torch.optim.optimizer import Optimizer
|
||||
from torch.utils.data import DataLoader
|
||||
from torchvision import models
|
||||
from torchvision import transforms
|
||||
from torchvision import models, transforms
|
||||
from torchvision.datasets import ImageFolder
|
||||
from torchvision.datasets.utils import download_and_extract_archive
|
||||
|
||||
import pytorch_lightning as pl
|
||||
from pl_examples import cli_lightning_logo
|
||||
import pytorch_lightning as pl
|
||||
from pytorch_lightning import _logger as log
|
||||
|
||||
BN_TYPES = (torch.nn.BatchNorm1d, torch.nn.BatchNorm2d, torch.nn.BatchNorm3d)
|
||||
|
|
|
@ -19,20 +19,20 @@ After a few epochs, launch TensorBoard to see the images being generated at ever
|
|||
|
||||
tensorboard --logdir default
|
||||
"""
|
||||
import os
|
||||
from argparse import ArgumentParser, Namespace
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F # noqa
|
||||
import torchvision
|
||||
import torchvision.transforms as transforms
|
||||
from torch.utils.data import DataLoader
|
||||
import torchvision
|
||||
from torchvision.datasets import MNIST
|
||||
import torchvision.transforms as transforms
|
||||
|
||||
from pl_examples import cli_lightning_logo
|
||||
from pytorch_lightning.core import LightningModule, LightningDataModule
|
||||
from pytorch_lightning.core import LightningDataModule, LightningModule
|
||||
from pytorch_lightning.trainer import Trainer
|
||||
|
||||
|
||||
|
|
|
@ -30,8 +30,8 @@ or show all options you can change:
|
|||
python imagenet.py --help
|
||||
|
||||
"""
|
||||
import os
|
||||
from argparse import ArgumentParser, Namespace
|
||||
import os
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
@ -44,8 +44,8 @@ import torchvision.datasets as datasets
|
|||
import torchvision.models as models
|
||||
import torchvision.transforms as transforms
|
||||
|
||||
import pytorch_lightning as pl
|
||||
from pl_examples import cli_lightning_logo
|
||||
import pytorch_lightning as pl
|
||||
from pytorch_lightning.core import LightningModule
|
||||
|
||||
|
||||
|
|
|
@ -33,8 +33,8 @@ Second-Edition/blob/master/Chapter06/02_dqn_pong.py
|
|||
"""
|
||||
|
||||
import argparse
|
||||
from collections import OrderedDict, deque, namedtuple
|
||||
from typing import Tuple, List
|
||||
from collections import deque, namedtuple, OrderedDict
|
||||
from typing import List, Tuple
|
||||
|
||||
import gym
|
||||
import numpy as np
|
||||
|
@ -45,8 +45,8 @@ from torch.optim.optimizer import Optimizer
|
|||
from torch.utils.data import DataLoader
|
||||
from torch.utils.data.dataset import IterableDataset
|
||||
|
||||
import pytorch_lightning as pl
|
||||
from pl_examples import cli_lightning_logo
|
||||
import pytorch_lightning as pl
|
||||
|
||||
|
||||
class DQN(nn.Module):
|
||||
|
|
|
@ -12,20 +12,20 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from argparse import ArgumentParser, Namespace
|
||||
import os
|
||||
import random
|
||||
from argparse import ArgumentParser, Namespace
|
||||
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import torchvision.transforms as transforms
|
||||
from PIL import Image
|
||||
from torch.utils.data import DataLoader, Dataset
|
||||
import torchvision.transforms as transforms
|
||||
|
||||
import pytorch_lightning as pl
|
||||
from pl_examples import cli_lightning_logo
|
||||
from pl_examples.domain_templates.unet import UNet
|
||||
import pytorch_lightning as pl
|
||||
from pytorch_lightning.loggers import WandbLogger
|
||||
|
||||
DEFAULT_VOID_LABELS = (0, 1, 2, 3, 4, 5, 6, 9, 10, 14, 15, 16, 18, 29, 30, -1)
|
||||
|
|
|
@ -23,7 +23,6 @@ known_first_party = [
|
|||
"tests",
|
||||
]
|
||||
skip_glob = [
|
||||
"pl_examples/*",
|
||||
"pytorch_lightning/accelerators/*",
|
||||
"pytorch_lightning/callbacks/*",
|
||||
"pytorch_lightning/cluster_environments/*",
|
||||
|
|
Loading…
Reference in New Issue