diff --git a/tests/base/develop_pipelines.py b/tests/base/develop_pipelines.py index 489e2cefe9..ba698e82c8 100644 --- a/tests/base/develop_pipelines.py +++ b/tests/base/develop_pipelines.py @@ -50,7 +50,7 @@ def run_model_test(trainer_options, model, on_gpu: bool = True, version=None, wi result = trainer.fit(model) # correct result and ok accuracy - assert result == 1, 'amp + ddp model failed to complete' + assert result == 1, 'trainer failed' # test model loading pretrained_model = load_model_from_checkpoint(logger, trainer.checkpoint_callback.best_model_path) diff --git a/tests/models/test_tpu.py b/tests/models/test_tpu.py index 5ec2e7e7d9..138fe0a415 100644 --- a/tests/models/test_tpu.py +++ b/tests/models/test_tpu.py @@ -7,6 +7,8 @@ from pytorch_lightning import Trainer from pytorch_lightning.utilities.exceptions import MisconfigurationException from tests.base import EvalModelTemplate import tests.base.develop_pipelines as tpipes +from tests.base.datasets import TrialMNIST +from torch.utils.data import DataLoader try: import torch_xla @@ -21,14 +23,13 @@ else: @pytest.mark.skipif(not TPU_AVAILABLE, reason="test requires TPU machine") -@pytest.mark.parametrize("tpu_cores", [1, [1], 8]) -def test_base_tpu_model(tmpdir, tpu_cores): +def test_base_tpu_model_1(tmpdir): """Make sure model trains on TPU.""" trainer_options = dict( default_root_dir=tmpdir, progress_bar_refresh_rate=0, max_epochs=1, - tpu_cores=tpu_cores, + tpu_cores=1, limit_train_batches=0.4, limit_val_batches=0.4 ) @@ -38,23 +39,104 @@ def test_base_tpu_model(tmpdir, tpu_cores): @pytest.mark.skipif(not TPU_AVAILABLE, reason="test requires TPU machine") -@pytest.mark.parametrize("tpu_cores", [1, [1], 8]) -def test_base_tpu_16bit_model(tmpdir, tpu_cores): +def test_base_tpu_model_idx_1(tmpdir): """Make sure model trains on TPU.""" trainer_options = dict( default_root_dir=tmpdir, - precision=16, progress_bar_refresh_rate=0, max_epochs=1, - tpu_cores=tpu_cores, + tpu_cores=[1], + limit_train_batches=0.4, + limit_val_batches=0.4 + ) + + model = EvalModelTemplate() + tpipes.run_model_test(trainer_options, model, on_gpu=False, with_hpc=False) + + +@pytest.mark.skipif(not TPU_AVAILABLE, reason="test requires TPU machine") +def test_base_tpu_model_8(tmpdir): + """Make sure model trains on TPU.""" + trainer_options = dict( + default_root_dir=tmpdir, + progress_bar_refresh_rate=0, + max_epochs=1, + tpu_cores=8, limit_train_batches=0.4, limit_val_batches=0.4 ) model = EvalModelTemplate() - tpipes.run_model_test(trainer_options, model, on_gpu=False) + # 8 cores needs a big dataset + def long_train_loader(): + dataset = DataLoader(TrialMNIST(download=True, num_samples=15000, digits=(0, 1, 2, 5, 8)), batch_size=32) + return dataset + model.train_dataloader = long_train_loader + model.val_dataloader = long_train_loader + tpipes.run_model_test(trainer_options, model, on_gpu=False, with_hpc=False) + + +@pytest.mark.skipif(not TPU_AVAILABLE, reason="test requires TPU machine") +def test_base_tpu_16bit_model_core_1(tmpdir): + """Make sure model trains on TPU.""" + trainer_options = dict( + default_root_dir=tmpdir, + precision=16, + progress_bar_refresh_rate=0, + max_epochs=1, + tpu_cores=1, + limit_train_batches=0.4, + limit_val_batches=0.4 + ) + + model = EvalModelTemplate() + tpipes.run_model_test(trainer_options, model, on_gpu=False) + assert os.environ.get('XLA_USE_BF16') == str(1), "XLA_USE_BF16 was not set in environment variables" + + +@pytest.mark.skipif(not TPU_AVAILABLE, reason="test requires TPU machine") +def test_base_tpu_16bit_model_idx_core(tmpdir): + """Make sure model trains on TPU.""" + trainer_options = dict( + default_root_dir=tmpdir, + precision=16, + progress_bar_refresh_rate=0, + max_epochs=1, + tpu_cores=[1], + limit_train_batches=0.4, + limit_val_batches=0.4 + ) + + model = EvalModelTemplate() + tpipes.run_model_test(trainer_options, model, on_gpu=False) + assert os.environ.get('XLA_USE_BF16') == str(1), "XLA_USE_BF16 was not set in environment variables" + + +@pytest.mark.skipif(not TPU_AVAILABLE, reason="test requires TPU machine") +def test_base_tpu_16bit_model_8_cores(tmpdir): + """Make sure model trains on TPU.""" + trainer_options = dict( + default_root_dir=tmpdir, + precision=16, + progress_bar_refresh_rate=0, + max_epochs=1, + tpu_cores=8, + limit_train_batches=0.4, + limit_val_batches=0.4 + ) + + model = EvalModelTemplate() + + # 8 cores needs a big dataset + def long_train_loader(): + dataset = DataLoader(TrialMNIST(download=True, num_samples=15000, digits=(0, 1, 2, 5, 8)), batch_size=32) + return dataset + model.train_dataloader = long_train_loader + model.val_dataloader = long_train_loader + + tpipes.run_model_test(trainer_options, model, on_gpu=False) assert os.environ.get('XLA_USE_BF16') == str(1), "XLA_USE_BF16 was not set in environment variables" @@ -80,11 +162,24 @@ def test_early_stop_checkpoints_on_tpu(tmpdir, tpu_cores, expected_device): @pytest.mark.skipif(not TPU_AVAILABLE, reason="test requires TPU machine") -@pytest.mark.parametrize(['tpu_cores', 'expected_device'], [ - pytest.param([1], 'xla:1'), - pytest.param([8], 'xla:8'), -]) -def test_single_tpu_core_model(tmpdir, tpu_cores, expected_device): +def test_early_stop_checkpoints_on_tpu(tmpdir): + """Test if single TPU core training works""" + model = EvalModelTemplate() + trainer = Trainer( + early_stop_callback=True, + default_root_dir=tmpdir, + progress_bar_refresh_rate=0, + max_epochs=50, + limit_train_batches=10, + limit_val_batches=10, + tpu_cores=1, + ) + trainer.fit(model) + assert torch_xla._XLAC._xla_get_default_device() == 'xla:1' + + +@pytest.mark.skipif(not TPU_AVAILABLE, reason="test requires TPU machine") +def test_single_tpu_core_model(tmpdir): """Test if single TPU core training works""" model = EvalModelTemplate() trainer = Trainer( @@ -93,15 +188,14 @@ def test_single_tpu_core_model(tmpdir, tpu_cores, expected_device): max_epochs=1, train_percent_check=0.1, val_percent_check=0.1, - tpu_cores=tpu_cores, + tpu_cores=8, ) trainer.fit(model) - assert torch_xla._XLAC._xla_get_default_device() == expected_device + assert torch_xla._XLAC._xla_get_default_device() == 'xla:8' -@pytest.mark.parametrize("tpu_cores", [1, 8]) @pytest.mark.skipif(not TPU_AVAILABLE, reason="test requires TPU machine") -def test_multi_core_tpu_model(tmpdir, tpu_cores): +def test_multi_core_tpu_model(tmpdir): """Test if distributed TPU core training works""" model = EvalModelTemplate() trainer = Trainer( @@ -109,7 +203,7 @@ def test_multi_core_tpu_model(tmpdir, tpu_cores): max_epochs=1, train_percent_check=0.4, val_percent_check=0.2, - tpu_cores=tpu_cores, + tpu_cores=[1, 8], ) trainer.fit(model) assert trainer.tpu_id is None