Fix PyTorch spelling errors (#13774)
* Fix PyTorch spelling errors * more
This commit is contained in:
parent
227871982d
commit
a8d7b4476c
|
@ -225,7 +225,7 @@ git push -f
|
|||
|
||||
#### How to add new tests?
|
||||
|
||||
We are using [pytest](https://docs.pytest.org/en/stable/) in Pytorch Lightning.
|
||||
We are using [pytest](https://docs.pytest.org/en/stable/) in PyTorch Lightning.
|
||||
|
||||
Here are tutorials:
|
||||
|
||||
|
|
|
@ -30,4 +30,4 @@ ______________________________________________________________________
|
|||
|
||||
- [**Bolts**](https://github.com/Lightning-AI/lightning-bolts): Pretrained SOTA Deep Learning models, callbacks, and more for research and production with PyTorch Lightning and PyTorch.
|
||||
|
||||
- [**Lightning Transformers**](https://github.com/Lightning-AI/lightning-transformers): Flexible interface for high-performance research using SOTA Transformers leveraging Pytorch Lightning, Transformers, and Hydra.
|
||||
- [**Lightning Transformers**](https://github.com/Lightning-AI/lightning-transformers): Flexible interface for high-performance research using SOTA Transformers leveraging PyTorch Lightning, Transformers, and Hydra.
|
||||
|
|
|
@ -38,4 +38,4 @@ ______________________________________________________________________
|
|||
|
||||
- [**Bolts**](https://github.com/Lightning-AI/lightning-bolts): Pretrained SOTA Deep Learning models, callbacks, and more for research and production with PyTorch Lightning and PyTorch.
|
||||
|
||||
- [**Lightning Transformers**](https://github.com/Lightning-AI/lightning-transformers): Flexible interface for high-performance research using SOTA Transformers leveraging Pytorch Lightning, Transformers, and Hydra.
|
||||
- [**Lightning Transformers**](https://github.com/Lightning-AI/lightning-transformers): Flexible interface for high-performance research using SOTA Transformers leveraging PyTorch Lightning, Transformers, and Hydra.
|
||||
|
|
|
@ -34,4 +34,4 @@ ______________________________________________________________________
|
|||
|
||||
- [**Bolts**](https://github.com/Lightning-AI/lightning-bolts): Pretrained SOTA Deep Learning models, callbacks, and more for research and production with PyTorch Lightning and PyTorch.
|
||||
|
||||
- [**Lightning Transformers**](https://github.com/Lightning-AI/lightning-transformers): Flexible interface for high-performance research using SOTA Transformers leveraging Pytorch Lightning, Transformers, and Hydra.
|
||||
- [**Lightning Transformers**](https://github.com/Lightning-AI/lightning-transformers): Flexible interface for high-performance research using SOTA Transformers leveraging PyTorch Lightning, Transformers, and Hydra.
|
||||
|
|
|
@ -14,7 +14,7 @@ issues:
|
|||
markComment: >
|
||||
This issue has been automatically marked as stale because it hasn't had any recent activity.
|
||||
This issue will be closed in 7 days if no further activity occurs.
|
||||
Thank you for your contributions, Pytorch Lightning Team!
|
||||
Thank you for your contributions, PyTorch Lightning Team!
|
||||
# Comment to post when closing a stale issue. Set to `false` to disable
|
||||
closeComment: false
|
||||
|
||||
|
|
|
@ -77,7 +77,7 @@ ENV \
|
|||
RUN pip --version && \
|
||||
pip config set global.cache-dir false && \
|
||||
conda remove pytorch torchvision && \
|
||||
# Install Pytorch XLA
|
||||
# Install PyTorch XLA
|
||||
py_version=${PYTHON_VERSION/./} && \
|
||||
gsutil cp "gs://tpu-pytorch/wheels/torch-${XLA_VERSION}-cp${py_version}-cp${py_version}m-linux_x86_64.whl" . && \
|
||||
gsutil cp "gs://tpu-pytorch/wheels/torch_xla-${XLA_VERSION}-cp${py_version}-cp${py_version}m-linux_x86_64.whl" . && \
|
||||
|
|
|
@ -8,7 +8,7 @@ Evolve a model into an ML system
|
|||
|
||||
**Required background:** Basic Python familiarity and complete the :ref:`build_model` guide.
|
||||
|
||||
**Goal:** We'll walk you through the two key steps to build your first Lightning App from your existing Pytorch Lightning scripts.
|
||||
**Goal:** We'll walk you through the two key steps to build your first Lightning App from your existing PyTorch Lightning scripts.
|
||||
|
||||
.. join_slack::
|
||||
:align: left
|
||||
|
@ -50,7 +50,7 @@ Inside the ``app.py`` file, add the following code.
|
|||
|
||||
.. literalinclude:: ../code_samples/convert_pl_to_app/app.py
|
||||
|
||||
This App runs the Pytorch Lightning script contained in the ``train.py`` file using the powerful :class:`~lightning_app.components.python.tracer.TracerPythonScript` component. This is really worth checking out!
|
||||
This App runs the PyTorch Lightning script contained in the ``train.py`` file using the powerful :class:`~lightning_app.components.python.tracer.TracerPythonScript` component. This is really worth checking out!
|
||||
|
||||
----
|
||||
|
||||
|
|
|
@ -34,7 +34,7 @@ can save or directly use.
|
|||
|
||||
It is recommended that you install the latest supported version of PyTorch to use this feature without limitations.
|
||||
|
||||
Once you have the exported model, you can run it in Pytorch or C++ runtime:
|
||||
Once you have the exported model, you can run it in PyTorch or C++ runtime:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
|
|
|
@ -48,7 +48,7 @@ so that each can be configured from .yaml or the Hydra CLI.
|
|||
|
||||
.. note:: Every NeMo model has an example configuration file and a corresponding script that contains all configurations needed for training.
|
||||
|
||||
The end result of using NeMo, Pytorch Lightning, and Hydra is that
|
||||
The end result of using NeMo, PyTorch Lightning, and Hydra is that
|
||||
NeMo models all have the same look and feel. This makes it easy to do Conversational AI research
|
||||
across multiple domains. NeMo models are also fully compatible with the PyTorch ecosystem.
|
||||
|
||||
|
|
|
@ -150,7 +150,7 @@ class CatDogImageDataModule(LightningDataModule):
|
|||
return self.__dataloader(train=False)
|
||||
|
||||
|
||||
# --- Pytorch-lightning module ---
|
||||
# --- PyTorch Lightning module ---
|
||||
|
||||
|
||||
class TransferLearningModel(LightningModule):
|
||||
|
|
|
@ -79,7 +79,7 @@ class TracerPythonScript(LightningWork):
|
|||
This callback has a reference to the work and on every batch end, we are capturing the
|
||||
trainer ``global_step`` and ``best_model_path``.
|
||||
|
||||
Even more interesting, this component works for ANY Pytorch Lightning script and
|
||||
Even more interesting, this component works for ANY PyTorch Lightning script and
|
||||
its state can be used in real time in a UI.
|
||||
|
||||
.. literalinclude:: ../../../../examples/app_components/python/component_tracer.py
|
||||
|
|
|
@ -1800,7 +1800,7 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
|
|||
- `period` has been deprecated in favor of `every_n_val_epochs` in the `ModelCheckpoint` callback ([#6146](https://github.com/PyTorchLightning/pytorch-lightning/pull/6146))
|
||||
- Deprecated `trainer.running_sanity_check` in favor of `trainer.sanity_checking` ([#4945](https://github.com/PyTorchLightning/pytorch-lightning/pull/4945))
|
||||
- Deprecated `Profiler(output_filename)` in favor of `dirpath` and `filename` ([#6621](https://github.com/PyTorchLightning/pytorch-lightning/pull/6621))
|
||||
- Deprecated `PytorchProfiler(profiled_functions)` in favor of `record_functions` ([#6349](https://github.com/PyTorchLightning/pytorch-lightning/pull/6349))
|
||||
- Deprecated `PyTorchProfiler(profiled_functions)` in favor of `record_functions` ([#6349](https://github.com/PyTorchLightning/pytorch-lightning/pull/6349))
|
||||
- Deprecated `@auto_move_data` in favor of `trainer.predict` ([#6993](https://github.com/PyTorchLightning/pytorch-lightning/pull/6993))
|
||||
- Deprecated `Callback.on_load_checkpoint(checkpoint)` in favor of `Callback.on_load_checkpoint(trainer, pl_module, checkpoint)` ([#7253](https://github.com/PyTorchLightning/pytorch-lightning/pull/7253))
|
||||
- Deprecated metrics in favor of `torchmetrics` (
|
||||
|
@ -2386,7 +2386,7 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
|
|||
[#4737](https://github.com/PyTorchLightning/pytorch-lightning/pull/4737),
|
||||
[#4773](https://github.com/PyTorchLightning/pytorch-lightning/pull/4773))
|
||||
- Added `experiment_id` to the NeptuneLogger ([#3462](https://github.com/PyTorchLightning/pytorch-lightning/pull/3462))
|
||||
- Added `Pytorch Geometric` integration example with Lightning ([#4568](https://github.com/PyTorchLightning/pytorch-lightning/pull/4568))
|
||||
- Added `PyTorch Geometric` integration example with Lightning ([#4568](https://github.com/PyTorchLightning/pytorch-lightning/pull/4568))
|
||||
- Added `all_gather` method to `LightningModule` which allows gradient based tensor synchronizations for use-cases such as negative sampling. ([#5012](https://github.com/PyTorchLightning/pytorch-lightning/pull/5012))
|
||||
- Enabled `self.log` in most functions ([#4969](https://github.com/PyTorchLightning/pytorch-lightning/pull/4969))
|
||||
- Added changeable extension variable for `ModelCheckpoint` ([#4977](https://github.com/PyTorchLightning/pytorch-lightning/pull/4977))
|
||||
|
|
|
@ -41,7 +41,7 @@ def _find_tensors(
|
|||
|
||||
|
||||
# In manual_optimization, we need to call reducer prepare_for_backward.
|
||||
# Note: Keep track of Pytorch DDP and update if there is a change
|
||||
# Note: Keep track of PyTorch DDP and update if there is a change
|
||||
# https://github.com/pytorch/pytorch/blob/v1.7.1/torch/nn/parallel/distributed.py#L626-L638
|
||||
def prepare_for_backward(model: DistributedDataParallel, output: Any) -> None:
|
||||
# `prepare_for_backward` is `DistributedDataParallel` specific.
|
||||
|
|
|
@ -85,7 +85,7 @@ class DDPFullyShardedNativeStrategy(ParallelStrategy):
|
|||
`For more information: https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/`.
|
||||
|
||||
.. warning:: ``DDPFullyShardedNativeStrategy`` is in beta and subject to change. The interface can
|
||||
bring breaking changes and new features with the next release of Pytorch.
|
||||
bring breaking changes and new features with the next release of PyTorch.
|
||||
|
||||
Defaults have been set and options have been exposed, but may require configuration
|
||||
based on your level of memory/speed efficiency. We suggest having a look at this tutorial for
|
||||
|
|
|
@ -256,7 +256,7 @@ class Trainer(
|
|||
|
||||
deterministic: If ``True``, sets whether PyTorch operations must use deterministic algorithms.
|
||||
Set to ``"warn"`` to use deterministic algorithms whenever possible, throwing warnings on operations
|
||||
that don't support deterministic mode (requires Pytorch 1.11+). If not set, defaults to ``False``.
|
||||
that don't support deterministic mode (requires PyTorch 1.11+). If not set, defaults to ``False``.
|
||||
Default: ``None``.
|
||||
|
||||
devices: Will be mapped to either `gpus`, `tpu_cores`, `num_processes` or `ipus`,
|
||||
|
|
|
@ -23,7 +23,7 @@ from torch.utils.data import Dataset, IterableDataset
|
|||
|
||||
|
||||
class MNIST(Dataset):
|
||||
"""Customized `MNIST <http://yann.lecun.com/exdb/mnist/>`_ dataset for testing Pytorch Lightning without the
|
||||
"""Customized `MNIST <http://yann.lecun.com/exdb/mnist/>`_ dataset for testing PyTorch Lightning without the
|
||||
torchvision dependency.
|
||||
|
||||
Part of the code was copied from
|
||||
|
|
Loading…
Reference in New Issue