Reverse width, height to height, width in docs (#8612)
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
This commit is contained in:
parent
ba8053492f
commit
a78709751a
|
@ -79,13 +79,13 @@ Let's first start with the model. In this case, we'll design a 3-layer neural ne
|
|||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
# mnist images are (1, 28, 28) (channels, width, height)
|
||||
# mnist images are (1, 28, 28) (channels, height, width)
|
||||
self.layer_1 = nn.Linear(28 * 28, 128)
|
||||
self.layer_2 = nn.Linear(128, 256)
|
||||
self.layer_3 = nn.Linear(256, 10)
|
||||
|
||||
def forward(self, x):
|
||||
batch_size, channels, width, height = x.size()
|
||||
batch_size, channels, height, width = x.size()
|
||||
|
||||
# (b, 1, 28, 28) -> (b, 1*28*28)
|
||||
x = x.view(batch_size, -1)
|
||||
|
@ -415,7 +415,7 @@ For clarity, we'll recall that the full LightningModule now looks like this.
|
|||
self.layer_3 = nn.Linear(256, 10)
|
||||
|
||||
def forward(self, x):
|
||||
batch_size, channels, width, height = x.size()
|
||||
batch_size, channels, height, width = x.size()
|
||||
x = x.view(batch_size, -1)
|
||||
x = self.layer_1(x)
|
||||
x = F.relu(x)
|
||||
|
@ -794,7 +794,7 @@ within it.
|
|||
|
||||
class MNISTClassifier(LightningModule):
|
||||
def forward(self, x):
|
||||
batch_size, channels, width, height = x.size()
|
||||
batch_size, channels, height, width = x.size()
|
||||
x = x.view(batch_size, -1)
|
||||
x = self.layer_1(x)
|
||||
x = F.relu(x)
|
||||
|
@ -822,7 +822,7 @@ In this case, we've set this LightningModel to predict logits. But we could also
|
|||
|
||||
class MNISTRepresentator(LightningModule):
|
||||
def forward(self, x):
|
||||
batch_size, channels, width, height = x.size()
|
||||
batch_size, channels, height, width = x.size()
|
||||
x = x.view(batch_size, -1)
|
||||
x = self.layer_1(x)
|
||||
x1 = F.relu(x)
|
||||
|
|
Loading…
Reference in New Issue