diff --git a/pytorch_lightning/models/sample_model_template/__init__.py b/pytorch_lightning/models/sample_model_template/__init__.py deleted file mode 100644 index e69de29bb2..0000000000 diff --git a/pytorch_lightning/models/sample_model_template/model_template.py b/pytorch_lightning/models/sample_model_template/model_template.py deleted file mode 100644 index 10f12c59a1..0000000000 --- a/pytorch_lightning/models/sample_model_template/model_template.py +++ /dev/null @@ -1,203 +0,0 @@ -import torch.nn as nn -import numpy as np -from pytorch_lightning import LightningModule -from test_tube import HyperOptArgumentParser -from torchvision.datasets import MNIST -import torchvision.transforms as transforms -import torch -import torch.nn.functional as F - - -class ExampleModel1(LightningModule): - """ - Sample model to show how to define a template - """ - - def __init__(self, hparams): - # init superclass - super(ExampleModel1, self).__init__(hparams) - - self.batch_size = hparams.batch_size - - # build model - self.__build_model() - - # --------------------- - # MODEL SETUP - # --------------------- - def __build_model(self): - """ - Layout model - :return: - """ - self.c_d1 = nn.Linear(in_features=self.hparams.in_features, out_features=self.hparams.hidden_dim) - self.c_d1_bn = nn.BatchNorm1d(self.hparams.hidden_dim) - self.c_d1_drop = nn.Dropout(self.hparams.drop_prob) - - self.c_d2 = nn.Linear(in_features=self.hparams.hidden_dim, out_features=self.hparams.out_features) - - # --------------------- - # TRAINING - # --------------------- - def forward(self, x): - x = self.c_d1(x) - x = F.tanh(x) - x = self.c_d1_bn(x) - x = self.c_d1_drop(x) - - x = self.c_d2(x) - logits = F.log_softmax(x, dim=1) - - return logits - - def loss(self, labels, logits): - nll = F.nll_loss(logits, labels) - return nll - - def training_step(self, data_batch): - """ - Called inside the training loop - :param data_batch: - :return: - """ - # forward pass - x, y = data_batch - x = x.view(x.size(0), -1) - y_hat = self.forward(x) - - # calculate loss - loss_val = self.loss(y, y_hat) - - tqdm_dic = {'jefe': 1} - return loss_val, tqdm_dic - - def validation_step(self, data_batch): - """ - Called inside the validation loop - :param data_batch: - :return: - """ - x, y = data_batch - x = x.view(x.size(0), -1) - y_hat = self.forward(x) - - loss_val = self.loss(y, y_hat) - - # acc - labels_hat = torch.argmax(y_hat, dim=1) - val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) - - output = {'y_hat': y_hat, 'val_loss': loss_val.item(), 'val_acc': val_acc} - return output - - def validation_end(self, outputs): - """ - Called at the end of validation to aggregate outputs - :param outputs: list of individual outputs of each validation step - :return: - """ - val_loss_mean = 0 - accs = [] - for output in outputs: - val_loss_mean += output['val_loss'] - accs.append(output['val_acc']) - - val_loss_mean /= len(outputs) - tqdm_dic = {'val_loss': val_loss_mean, 'val_acc': np.mean(accs)} - return tqdm_dic - - def update_tng_log_metrics(self, logs): - return logs - - # --------------------- - # MODEL SAVING - # --------------------- - def get_save_dict(self): - checkpoint = { - 'state_dict': self.state_dict(), - } - - return checkpoint - - def load_model_specific(self, checkpoint): - self.load_state_dict(checkpoint['state_dict']) - pass - - # --------------------- - # TRAINING SETUP - # --------------------- - def configure_optimizers(self): - """ - return whatever optimizers we want here - :return: list of optimizers - """ - optimizer = self.choose_optimizer(self.hparams.optimizer_name, self.parameters(), {'lr': self.hparams.learning_rate}, 'optimizer') - self.optimizers = [optimizer] - return self.optimizers - - def __dataloader(self, train): - # init data generators - transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (1.0,))]) - - dataset = MNIST(root=self.hparams.data_root, train=train, transform=transform, download=True) - - loader = torch.utils.data.DataLoader( - dataset=dataset, - batch_size=self.hparams.batch_size, - shuffle=True - ) - - return loader - - @data_loader - def tng_dataloader(self): - if self._tng_dataloader is None: - try: - self._tng_dataloader = self.__dataloader(train=True) - except Exception as e: - print(e) - raise e - return self._tng_dataloader - - @property - def val_dataloader(self): - if self._val_dataloader is None: - try: - self._val_dataloader = self.__dataloader(train=False) - except Exception as e: - print(e) - raise e - return self._val_dataloader - - @property - def test_dataloader(self): - if self._test_dataloader is None: - try: - self._test_dataloader = self.__dataloader(train=False) - except Exception as e: - print(e) - raise e - return self._test_dataloader - - @staticmethod - def add_model_specific_args(parent_parser): - parser = HyperOptArgumentParser(strategy=parent_parser.strategy, parents=[parent_parser]) - - # param overwrites - # parser.set_defaults(gradient_clip=5.0) - - # network params - parser.opt_list('--drop_prob', default=0.2, options=[0.2, 0.5], type=float, tunable=False) - parser.add_argument('--in_features', default=28*28) - parser.add_argument('--hidden_dim', default=500) - parser.add_argument('--out_features', default=10) - - # data - parser.add_argument('--data_root', default='/Users/williamfalcon/Developer/personal/research_lib/research_proj/datasets/mnist', type=str) - - # training params (opt) - parser.opt_list('--learning_rate', default=0.001, type=float, options=[0.0001, 0.0005, 0.001, 0.005], - tunable=False) - parser.opt_list('--batch_size', default=256, type=int, options=[32, 64, 128, 256], tunable=False) - parser.opt_list('--optimizer_name', default='adam', type=str, options=['adam'], tunable=False) - return parser