Don't raise a warning when `nn.Module`s are not saved under hparams (#12669)
This commit is contained in:
parent
5fea717027
commit
a44b5dc0cb
|
@ -98,6 +98,9 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
|
|||
- Fixed `rank_zero_only` decorator in LSF environments ([#12587](https://github.com/PyTorchLightning/pytorch-lightning/pull/12587))
|
||||
|
||||
|
||||
- Don't raise a warning when `nn.Module` is not saved under hparams ([#12669](https://github.com/PyTorchLightning/pytorch-lightning/pull/12669))
|
||||
|
||||
|
||||
-
|
||||
|
||||
|
||||
|
|
|
@ -234,17 +234,7 @@ def save_hyperparameters(
|
|||
ignore = [arg for arg in ignore if isinstance(arg, str)]
|
||||
|
||||
ignore = list(set(ignore))
|
||||
|
||||
for k in list(init_args):
|
||||
if k in ignore:
|
||||
del init_args[k]
|
||||
continue
|
||||
|
||||
if isinstance(init_args[k], nn.Module):
|
||||
rank_zero_warn(
|
||||
f"Attribute {k!r} is an instance of `nn.Module` and is already saved during checkpointing."
|
||||
f" It is recommended to ignore them using `self.save_hyperparameters(ignore=[{k!r}])`."
|
||||
)
|
||||
init_args = {k: v for k, v in init_args.items() if k not in ignore}
|
||||
|
||||
if not args:
|
||||
# take all arguments
|
||||
|
@ -266,6 +256,13 @@ def save_hyperparameters(
|
|||
# make deep copy so there is not other runtime changes reflected
|
||||
obj._hparams_initial = copy.deepcopy(obj._hparams)
|
||||
|
||||
for k, v in obj._hparams.items():
|
||||
if isinstance(v, nn.Module):
|
||||
rank_zero_warn(
|
||||
f"Attribute {k!r} is an instance of `nn.Module` and is already saved during checkpointing."
|
||||
f" It is recommended to ignore them using `self.save_hyperparameters(ignore=[{k!r}])`."
|
||||
)
|
||||
|
||||
|
||||
class AttributeDict(Dict):
|
||||
"""Extended dictionary accessible with dot notation.
|
||||
|
|
|
@ -34,6 +34,7 @@ from pytorch_lightning.utilities import _HYDRA_EXPERIMENTAL_AVAILABLE, _OMEGACON
|
|||
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
||||
from tests.helpers import BoringModel, RandomDataset
|
||||
from tests.helpers.runif import RunIf
|
||||
from tests.helpers.utils import no_warning_call
|
||||
|
||||
if _HYDRA_EXPERIMENTAL_AVAILABLE:
|
||||
from hydra.experimental import compose, initialize
|
||||
|
@ -819,18 +820,28 @@ def test_colliding_hparams(tmpdir):
|
|||
trainer.fit(model, datamodule=data)
|
||||
|
||||
|
||||
def test_nn_modules_raises_warning_when_saved_as_hparams():
|
||||
def test_nn_modules_warning_when_saved_as_hparams():
|
||||
class TorchModule(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.l1 = torch.nn.Linear(4, 5)
|
||||
|
||||
class CustomBoringModel(BoringModel):
|
||||
class CustomBoringModelWarn(BoringModel):
|
||||
def __init__(self, encoder, decoder, other_hparam=7):
|
||||
super().__init__()
|
||||
self.save_hyperparameters()
|
||||
|
||||
with pytest.warns(UserWarning, match="is an instance of `nn.Module` and is already saved"):
|
||||
model = CustomBoringModel(encoder=TorchModule(), decoder=TorchModule())
|
||||
model = CustomBoringModelWarn(encoder=TorchModule(), decoder=TorchModule())
|
||||
|
||||
assert list(model.hparams) == ["encoder", "decoder", "other_hparam"]
|
||||
|
||||
class CustomBoringModelNoWarn(BoringModel):
|
||||
def __init__(self, encoder, decoder, other_hparam=7):
|
||||
super().__init__()
|
||||
self.save_hyperparameters("other_hparam")
|
||||
|
||||
with no_warning_call(UserWarning, match="is an instance of `nn.Module` and is already saved"):
|
||||
model = CustomBoringModelNoWarn(encoder=TorchModule(), decoder=TorchModule())
|
||||
|
||||
assert list(model.hparams) == ["other_hparam"]
|
||||
|
|
Loading…
Reference in New Issue