ShardedGradScaler should only be set for FP16 (#12915)
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
This commit is contained in:
parent
a22697ca3f
commit
a3a96adf3b
|
@ -35,7 +35,7 @@ class ShardedNativeMixedPrecisionPlugin(NativeMixedPrecisionPlugin):
|
|||
"You have asked for sharded AMP but you have not installed it."
|
||||
" Install `fairscale` using this guide: https://https://github.com/facebookresearch/fairscale"
|
||||
)
|
||||
super().__init__(precision, device, scaler=scaler or ShardedGradScaler())
|
||||
super().__init__(precision, device, scaler=ShardedGradScaler() if scaler is None and precision == 16 else None)
|
||||
|
||||
def clip_grad_by_norm(self, optimizer: "OSS", clip_val: Union[int, float]) -> None:
|
||||
optimizer.clip_grad_norm(clip_val)
|
||||
|
|
|
@ -0,0 +1,42 @@
|
|||
# Copyright The PyTorch Lightning team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from pytorch_lightning.plugins import ShardedNativeMixedPrecisionPlugin
|
||||
from pytorch_lightning.utilities import _FAIRSCALE_AVAILABLE
|
||||
from tests.helpers.runif import RunIf
|
||||
|
||||
ShardedGradScaler = None
|
||||
if _FAIRSCALE_AVAILABLE:
|
||||
from fairscale.optim.grad_scaler import ShardedGradScaler
|
||||
|
||||
|
||||
@RunIf(fairscale=True)
|
||||
@pytest.mark.parametrize(
|
||||
"precision,scaler,expected",
|
||||
[
|
||||
(16, torch.cuda.amp.GradScaler(), torch.cuda.amp.GradScaler),
|
||||
(16, None, ShardedGradScaler),
|
||||
pytest.param("bf16", None, None, marks=RunIf(min_torch="1.10")),
|
||||
(32, None, None),
|
||||
],
|
||||
)
|
||||
def test_sharded_precision_scaler(precision, scaler, expected):
|
||||
plugin = ShardedNativeMixedPrecisionPlugin(precision=precision, scaler=scaler, device="cuda")
|
||||
if expected:
|
||||
assert isinstance(plugin.scaler, expected)
|
||||
else:
|
||||
assert not plugin.scaler
|
Loading…
Reference in New Issue