ShardedGradScaler should only be set for FP16 (#12915)

Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
This commit is contained in:
Sean Naren 2022-04-28 16:44:31 +01:00 committed by lexierule
parent a22697ca3f
commit a3a96adf3b
2 changed files with 43 additions and 1 deletions

View File

@ -35,7 +35,7 @@ class ShardedNativeMixedPrecisionPlugin(NativeMixedPrecisionPlugin):
"You have asked for sharded AMP but you have not installed it."
" Install `fairscale` using this guide: https://https://github.com/facebookresearch/fairscale"
)
super().__init__(precision, device, scaler=scaler or ShardedGradScaler())
super().__init__(precision, device, scaler=ShardedGradScaler() if scaler is None and precision == 16 else None)
def clip_grad_by_norm(self, optimizer: "OSS", clip_val: Union[int, float]) -> None:
optimizer.clip_grad_norm(clip_val)

View File

@ -0,0 +1,42 @@
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pytest
import torch
from pytorch_lightning.plugins import ShardedNativeMixedPrecisionPlugin
from pytorch_lightning.utilities import _FAIRSCALE_AVAILABLE
from tests.helpers.runif import RunIf
ShardedGradScaler = None
if _FAIRSCALE_AVAILABLE:
from fairscale.optim.grad_scaler import ShardedGradScaler
@RunIf(fairscale=True)
@pytest.mark.parametrize(
"precision,scaler,expected",
[
(16, torch.cuda.amp.GradScaler(), torch.cuda.amp.GradScaler),
(16, None, ShardedGradScaler),
pytest.param("bf16", None, None, marks=RunIf(min_torch="1.10")),
(32, None, None),
],
)
def test_sharded_precision_scaler(precision, scaler, expected):
plugin = ShardedNativeMixedPrecisionPlugin(precision=precision, scaler=scaler, device="cuda")
if expected:
assert isinstance(plugin.scaler, expected)
else:
assert not plugin.scaler