From a1ea681c47004599ee5a47a05ddd1b4ea12e60d4 Mon Sep 17 00:00:00 2001 From: Rohit Gupta Date: Fri, 11 Sep 2020 02:31:20 +0530 Subject: [PATCH] Fix batch_outputs with optimizer frequencies (#3229) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit * Fix batch_outputs with optimizers frequencies * optimizers * fix batch_outputs with optimizer frequencies * clean test * suggestion Co-authored-by: Adrian Wälchli * chlog * failing doctest * failing doctest * update doctest * chlog Co-authored-by: Adrian Wälchli --- CHANGELOG.md | 2 ++ docs/source/converting.rst | 16 ++++++++-------- pytorch_lightning/trainer/training_loop.py | 3 ++- tests/base/model_optimizers.py | 8 ++++++++ tests/trainer/test_optimizers.py | 15 +++++++++++++++ 5 files changed, 35 insertions(+), 9 deletions(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index 648244470c..709cfc13a1 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -37,6 +37,8 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/). - Fixed `GpuUsageLogger` to work on different platforms ([#3008](https://github.com/PyTorchLightning/pytorch-lightning/pull/3008)) +- Fixed batch_outputs with optimizer frequencies ([#3229](https://github.com/PyTorchLightning/pytorch-lightning/pull/3229)) + - Fixed setting batch size in `LightningModule.datamodule` when using `auto_scale_batch_size` ([#3266](https://github.com/PyTorchLightning/pytorch-lightning/pull/3266)) - Fixed Horovod distributed backend compatibility with native AMP ([#3404](https://github.com/PyTorchLightning/pytorch-lightning/pull/3404)) diff --git a/docs/source/converting.rst b/docs/source/converting.rst index ccdef25755..a131166411 100644 --- a/docs/source/converting.rst +++ b/docs/source/converting.rst @@ -16,9 +16,9 @@ To enable your code to work with Lightning, here's how to organize PyTorch into =============================== Move the model architecture and forward pass to your :class:`~pytorch_lightning.core.LightningModule`. -.. code-block:: +.. testcode:: - class LitModel(pl.LightningModule): + class LitModel(LightningModule): def __init__(self): super().__init__() @@ -36,9 +36,9 @@ Move the model architecture and forward pass to your :class:`~pytorch_lightning. ======================================= Move your optimizers to :func:`pytorch_lightning.core.LightningModule.configure_optimizers` hook. Make sure to use the hook parameters (self in this case). -.. code-block:: +.. testcode:: - class LitModel(pl.LightningModule): + class LitModel(LightningModule): def configure_optimizers(self): optimizer = torch.optim.Adam(self.parameters(), lr=1e-3) @@ -48,9 +48,9 @@ Move your optimizers to :func:`pytorch_lightning.core.LightningModule.configure_ ============================= Lightning automates most of the trining for you, the epoch and batch iterations, all you need to keep is the training step logic. This should go into :func:`pytorch_lightning.core.LightningModule.training_step` hook (make sure to use the hook parameters, self in this case): -.. code-block:: +.. testcode:: - class LitModel(pl.LightningModule): + class LitModel(LightningModule): def training_step(self, batch, batch_idx): x, y = batch @@ -78,9 +78,9 @@ To add an (optional) validation loop add logic to :func:`pytorch_lightning.core. ============================ To add an (optional) test loop add logic to :func:`pytorch_lightning.core.LightningModule.test_step` hook (make sure to use the hook parameters, self in this case). -.. code-block:: +.. testcode:: - class LitModel(pl.LightningModule): + class LitModel(LightningModule): def test_step(self, batch, batch_idx): x, y = batch diff --git a/pytorch_lightning/trainer/training_loop.py b/pytorch_lightning/trainer/training_loop.py index 62499f872f..e6098d4eb4 100644 --- a/pytorch_lightning/trainer/training_loop.py +++ b/pytorch_lightning/trainer/training_loop.py @@ -500,7 +500,8 @@ class TrainLoop: self.accumulated_loss.append(opt_closure_result.loss) # track all the outputs across all steps - batch_outputs[opt_idx].append(opt_closure_result.training_step_output_for_epoch_end) + batch_opt_idx = opt_idx if len(batch_outputs) > 1 else 0 + batch_outputs[batch_opt_idx].append(opt_closure_result.training_step_output_for_epoch_end) # ------------------------------ # BACKWARD PASS diff --git a/tests/base/model_optimizers.py b/tests/base/model_optimizers.py index 4628a92807..9e5f558b43 100644 --- a/tests/base/model_optimizers.py +++ b/tests/base/model_optimizers.py @@ -34,6 +34,14 @@ class ConfigureOptimizersPool(ABC): optimizer2 = optim.Adam(self.parameters(), lr=self.learning_rate) return optimizer1, optimizer2 + def configure_optimizers__multiple_optimizers_frequency(self): + optimizer1 = optim.Adam(self.parameters(), lr=self.learning_rate) + optimizer2 = optim.Adam(self.parameters(), lr=self.learning_rate) + return [ + {'optimizer': optimizer1, 'frequency': 1}, + {'optimizer': optimizer2, 'frequency': 5} + ] + def configure_optimizers__single_scheduler(self): optimizer = optim.Adam(self.parameters(), lr=self.learning_rate) lr_scheduler = optim.lr_scheduler.StepLR(optimizer, 1, gamma=0.1) diff --git a/tests/trainer/test_optimizers.py b/tests/trainer/test_optimizers.py index 3a85a756fc..9d70522145 100644 --- a/tests/trainer/test_optimizers.py +++ b/tests/trainer/test_optimizers.py @@ -240,3 +240,18 @@ def test_configure_optimizer_from_dict(tmpdir): ) result = trainer.fit(model) assert result == 1 + + +def test_configure_optimizers_with_frequency(tmpdir): + """ + Test that multiple optimizers work when corresponding frequency is set. + """ + model = EvalModelTemplate() + model.configure_optimizers = model.configure_optimizers__multiple_optimizers_frequency + + trainer = Trainer( + default_root_dir=tmpdir, + max_epochs=1 + ) + result = trainer.fit(model) + assert result