added example and verified

This commit is contained in:
William Falcon 2019-03-31 16:30:55 -04:00
parent d286206e86
commit 9f7caa2131
1 changed files with 70 additions and 39 deletions

109
README.md
View File

@ -53,51 +53,82 @@ To use lightning do 2 things:
```python ```python
# trainer.py # trainer.py
from pytorch_lightning.models.trainer import Trainer import os
import sys
from test_tube import HyperOptArgumentParser, Experiment
from pytorch_lightning.models.trainer import Trainer
from pytorch_lightning.utils.arg_parse import add_default_args
from pytorch_lightning.utils.pt_callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utils.pt_callbacks import EarlyStopping, ModelCheckpoint
from my_project import My_Model from demo.example_model import ExampleModel
from test_tube import HyperOptArgumentParser, Experiment, SlurmCluster
# --------------
# TEST TUBE INIT
exp = Experiment(
name='my_exp',
debug=True,
save_dir='/some/path',
autosave=False,
description='my desc'
)
# -------------------- def main(hparams):
# CALLBACKS """
early_stop = EarlyStopping( Main training routine specific for this project
monitor='val_loss', :param hparams:
patience=3, :return:
verbose=True, """
mode='min' # init experiment
) exp = Experiment(
name=hparams.tt_name,
debug=hparams.debug,
save_dir=hparams.tt_save_path,
version=hparams.hpc_exp_number,
autosave=False,
description=hparams.tt_description
)
model_save_path = 'PATH/TO/SAVE' exp.argparse(hparams)
checkpoint = ModelCheckpoint( exp.save()
filepath=model_save_path,
save_function=None,
save_best_only=True,
verbose=True,
monitor='val_acc',
mode='min'
)
# configure trainer # build model
trainer = Trainer( print('loading model...')
experiment=experiment, model = ExampleModel(hparams)
cluster=cluster, print('model built')
checkpoint_callback=checkpoint,
early_stop_callback=early_stop
)
# init model and train # callbacks
model = My_Model() early_stop = EarlyStopping(
trainer.fit(model) monitor=hparams.early_stop_metric,
patience=hparams.early_stop_patience,
verbose=True,
mode=hparams.early_stop_mode
)
model_save_path = '{}/{}/{}'.format(hparams.model_save_path, exp.name, exp.version)
checkpoint = ModelCheckpoint(
filepath=model_save_path,
save_function=None,
save_best_only=True,
verbose=True,
monitor=hparams.model_save_monitor_value,
mode=hparams.model_save_monitor_mode
)
# configure trainer
trainer = Trainer(
experiment=exp,
checkpoint_callback=checkpoint,
early_stop_callback=early_stop,
)
# train model
trainer.fit(model)
if __name__ == '__main__':
# use default args given by lightning
root_dir = os.path.split(os.path.dirname(sys.modules['__main__'].__file__))[0]
parent_parser = HyperOptArgumentParser(strategy='random_search', add_help=False)
add_default_args(parent_parser, root_dir)
# allow model to overwrite or extend args
parser = ExampleModel.add_model_specific_args(parent_parser)
hyperparams = parser.parse_args()
# train model
main(hyperparams)
``` ```
#### Define the model #### Define the model